Category Archives: QSFP+ transceiver

QSFP+ to SFP+ Adapter (QSA) Module Vs. QSFP+ to SFP+ Breakout Cable

People frequently ask about feasible solutions between 10G and 40G servers. QSFP+ breakout cables like QSFP+ to 4 SFP+ cables and MTP to 4 LC harness cables are the commonly used equipment to connect between QSFP+ ports and SFP+ ports. But recently, Cisco launched a new type of product—QSFP+ to SFP+ Adapter (QSA) module that could provide a smooth migration to 40 Gigabit Ethernet. Is it a better solution for the 10G to 40G migration? Should I use the QSA module or 40G QSFP+ breakout cable? This article will answer the above questions and provide some suggestions to you.

QSA Module—Is It a Better Solution for the 40G Migration?

The QSFP+ to SFP+ Adapter module, specified by Cisco, is the module built in QSFP+ form factor with a receptacle for SFP+ cable connector at the back (seen in the below image). When connecting the QSFP port to an SFP+ port, QSA module usually acts as an interface for SFP+/SFP cables. That means you can effectively plug in an SFP+/SFP optics operating at a 10 Gbps port on this module, then inserting the module into a QSFP port cage to realize the 40G Ethernet transition. QSFP+ to SFP+ adapter module ensures the smooth connectivity between 40 Gigabit Ethernet adapter and 10 Gigabit hardware using SFP+ based cabling. Therefore, once the QSA module came out in 2016, it was soon considered as the effective solutions for converting 40G ports to the 10G ports.

Cisco QSFP+ to SFP+ adapter cable

40G QSFP+ Breakout Cables Overview

People usually use either the QSFP+ to 4 SFP+ breakout cables or MTP to LC harness cables to convert the downlink 40G port of ToR (Top of Rack) access layer switch into 4x10G fan out mode, then connect to the 10G cabinet server port. QSFP+ to SFP+ breakout cable including the direct attach copper cable (DAC) and active optical cable (AOC) consists of a QSFP+ connector on one end and four SFP+ connectors on the other end. The cables use high-performance integrated duplex serial data links for bidirectional communication on four links simultaneously.

QSFP+ to SFP+ breakout cable

While the MTP to LC harness cable have one one MTP cables on the one end and four LC connectors on the other end. This type of cable is recommended to be used in the same rack within the short distance. The picture above shows the direct connectivity between the QSFP+ transceivers and SFP+ transceivers by using the MTP to LC harness cable.

QSA Module or QSFP+ Breakout Cable

In this part, I will make a comparison between QSFP+ to SFP+ adapter modules and QSFP+ breakout cables from the aspects of cost, performance and compatibility.

Cost—QSFP+ Breakout Cables Wins

QSFP+ to SFP+ adapter module is not certificated by Multi-source Agreement (MSA), but a sole source paradigm defined by few vendors. The only vendor owns its patent, so the QSA modules on the market are quite expensive. Nevertheless, QSFP+ breakout cables covered in the MSA standard, support both copper and optical connectivity, which are much cheaper than QSA modules. Cost comparison between QSA module and QSFP+ breakout cable (DAC, 1m) is listed in the below table.

cost comparison between QSA module and QSFP+ breakout cable

Performance

With QSA module, users have the flexibility to use any SFP+/SFP optics to connect to the 40Gbps data rate with a single 10G connection. However, QSA module only exists in 10G-40G speed, which also explains the reasons of its unpopularity of the market. QSFP+ to 4 SFP+ breakout cables split the 40G channel into 4x10G channel which provide four times more data transfers than QSA module does.

Compatible Switch and SFP/SFP+ Modules

QSA modules, according to Cisco, are available in 40 Gigabit Ethernet compatibility matrix. Cisco SFP/SFP+ transceivers that can be plugged into the QSA modules are concluded as Cisco 10GBASE-SR, LR, ER, ZR, DWDM SFP+, FET-10G and 10G SFP+ cable as well as SFP (1000BASE-T, SX, LX, EX, ZX). As for the QSFP+ to SFP+ breakout cables, different vendors have different compatible issues. Keep in mind that you should find the reliable fiber optic transceiver manufacturers.

Reminder:

  • Before using the QSA modules or the QSFP+ breakout cables to connect a 40 Gigabit Ethernet port to a 10 Gigabit SFP+ port, you must enable the fan-out mode of your devices.
  • Not all the 40G cards and switches can be split into 4x 10Gb mode, for example, the Mellanox QSFP cards do not support the QSFP to SFP+ breakout, but their switches can.
  • With the QSA module, you can directly use the SFP+ modules in a QSFP+ port, but you cannot use the QSFP+ optical cables in a QSA setup.
  • Telecom industry has been modified rapidly. Hence, it is more cost-effective to make additional investment in high-speed switches instead of breakout cables and expensive QSA modules.
Conclusion

Both the QSFP+ breakout cables and QSA modules provide a smooth migration to the 40 Gigabit Ethernet. With these optics, you can reuse the existing 10G SFP+ cables, optical transceivers and switches when upgrading to 40G Ethernet. QSFP+ breakout cables is regarded as the cost-effective and reliable solutions for the most situations, but QSA module is preferable for the application with a single 10G connection.

Can I Use the QSFP+ Optics on QSFP28 Port?

100G Ethernet will have a larger share of network equipment market in 2017, according to Infonetics Research. But we can’t neglect the fact that 100G technology and relevant optics are still under development. Users who plan to layout 100G network for long-hual infrastructures usually met some problems. For example, currently, the qsfp28 optics on the market can only support up to 10 km (QSFP28 100GBASE-LR4) with WDM technology, which means you have to buy the extra expensive WDM devices. For applications beyond 10km, QSFP28 optical transceivers cannot reach it. Therefore, users have to use 40G QSFP+ optics on 100G switches. But here comes a problem, can I use the QSFP+ optics on the QSFP28 port of the 100G switch? If this is okay, can I use the QSFP28 modules on the QSFP+ port? This article discusses the feasibility of this solution and provides a foundational guidance of how to configure the 100G switches.

For Most Switches, QSFP+ Can Be Used on QSFP28 Port

As we all know that QSFP28 transceivers have the same form factor as the QSFP optical transceiver. The former has just 4 electrical lanes that can be used as a 4x10GbE, 4x25GbE, while the latter supports 40G ( 4x10G). So from all of this information, a QSFP28 module breaks out into either 4x25G or 4x10G lanes, which depends on the transceiver used. This is the same case with the SFP28 transceivers that accept SFP+ transceivers and run at the lower 10G speed.

QSFP+ can work on the QSFP28 ports

A 100G QSFP28 port can generally take either a QSFP+ or QSFP28 optics. If the QSFP28 optics support 25G lanes, then it can operate 4x25G breakout, 2x50G breakout or 1x100G (no breakout). The QSFP+ optic supports 10G lanes, so it can run 4x10GE or 1x40GE. If you use the QSFP transceivers in QSFP28 port, keep in mind that you have both single-mode and multimode (SR/LR) optical transceivers and twinax/AOC options that are available.

In all Cases, QSFP28 Optics Cannot Be Used on QSFP+ Port

SFP+ can’t auto-negotiate to support SFP module, similarly QSFP28 modules can not be used on the QSFP port, either. There is the rule about mixing optical transceivers with different speed—it basically comes down to the optic and the port, vice versa. Both ends of the two modules have to match and form factor needs to match as well. Additionally, port speed needs to be equal or greater than the optic used.

How to Configure 100G Switch

For those who are not familiar with how to do the port configuration, you can have a look at the following part.

  • How do you change 100G QSFP ports to support QSFP+ 40GbE transceivers?

Configure the desired speed as 40G:
(config)# interface Ethernet1/1
(config-if-Et1/1)# speed forced 40gfull

  • How do you change 100G QSFP ports to support 4x10GbE mode using a QSFP+ transceiver?

Configure the desired speed as 10G:
(config)# interface Ethernet1/1 – 4
(config-if-Et1/1-4)# speed forced 10000full

  • How do you change 100G QSFP ports from 100GbE mode to 4x25G mode?

Configure the desired speed as 25G:
(config)# interface Ethernet1/1 – 4
(config-if-Et1/1-4)# speed forced 25gfull

  • How do you change 100G QSFP ports back to the default mode?

Configure the port to default mode:
(config)# interface Ethernet1/1-4
(config-if-Et1/1)# no speed

Note that if you have no experience in port configuration, it is advisable for you to consult your switch vendor in advance.

Conclusion

To sum up, QSFP+ modules can be used on the QSFP28 ports, but QSFP28 transceivers cannot transmit 100Gbps on the QSFP+ port. When using the QSFP optics on the QSFP28 port, don’t forget to configure your switch (follow the above instructions). To make sure the smooth network transmission, you need to ensure the connectors on both ends are the same and no manufacturer compatibility issue exists.