Category Archives: SFP Transceiver

How to Solve the Problems When Using SFP Optical Transceiver

The small form-factor pluggable (SFP) optical transceiver is one of the protagonists of modern networking, which is a hot-swappable, compact media connector used for telecommunication and data communications. It is designed to provide instant fiber connectivity for your networking devices, such as routers and switches. It is a cost-effective way to connect a single network device to a wide variety of fiber cable for different distances and fiber types, including Ethernet, SONET, single-mode fiber, and multi-mode fiber. Therefore, most people are using SFP optical transceivers for their 1G transmission, especially Cisco SFP transceiver. At the same time, there are many problems when using these SFP optical transceivers. This article may summary the problems that may occur and provide the guided solutions for you, as well as give you some notes for maintaining the quality of SFP optical transceivers.

SFP Transceiver

Problems & Solutions

Some problems may appear when we are using SFP optical transceivers. Now let’s talk about why these problems happen and how to solve these problems. The problems are classified as transmitting failure and receiving failure. The problems and solutions are as follows:

Optical Interface Is Polluted and Damaged

Owing to the pollution and damage of the optical interface, its optical link loss become higher, resulting in the optical link fails.

Solutions
  • Testing the environment of the exposed optical interface, some dust and pollution may enter into the structure.
  • Testing the link ending of optical fibers, because the optical interface may experience second pollution.
  • Testing the interface of the optical connector with pigtail, it may have some improper uses.
  • Testing the quality of fiber optic connectors, you could use the inferior optical fiber connectors.
Damage of ESD(Electro Static Discharge)

Static electricity will absorb dust, which may change impedance line and affect the life and function of the product. The ESD will damage components, which may work in short-term, but their life is still affected.

Solutions
  • Avoiding the dry environment, for which easily produce the ESD.
  • Avoiding the abnormal operation. For example, operating the non-hot-swappable optical modules with electricity; directly touching the pin of optical transceiver modules by hand without ESD protection; there is not anti-static packaging during the transport and storage process.
  • Avoiding non ground-connection or bad ground connection.
  • Improving the ESD immunity of electronic components, because the ESD is inevitable.
Incompatibility

While SFP transceivers are fully-compliant with IEEE 802.3 and the SFP multi-source agreement (MSA), they may not be compatible with some network switch equipment. Because some switch manufacturers program their equipment to accept only their own brand of SFPs.

Solutions

Each SFP module holds its own memory in Electrically Erasable Programmable Read – Only Memory (EEPROM). This memory is coded with unique identifiers. The firmware of the host device will check the memory for the correct information to confirm compatibility. A SFP transceiver will work in any host device as long as it has the correct coding. Advance transceivers are coded specifically to suit each host device to avoid this problem.

Notes for Maintaining the Quality of SFP Transceiver

Quality is also very important for SFP optical transceiver, for which is the top priority of customers. Here are some notes:

  • Finding the failure product in advance before shipment
  • Prohibiting the faulty module to leave the factory
  • Decreasing reject rate
  • Guaranteeing the working stability of the products after leaving the factory
Summary

SFP optical transceivers provide a cost-effective and flexible solution for network designs. I hope this article can help you solve the problems when you are using the products and learn how to avoid these problems.

Will Single-mode Fiber Work Over Multimode SFP Transceiver?

Network installers usually come across a situation that device you have in your network does not always fit and work perfectly with the fiber. They plan to make a cable plant based on the multimode cabling, but owing to the link limitation or other reasons, they have to connect multimode equipment with single-mode devices. Is it feasible? Or put it more specifically, can I use the multimode SFP over single-mode fibers or vice versa? This article will give you a detailed illustration about the feasibility of the solutions, and introduce two relevant devices (mode conditioning cable and multimode to single-mode fiber media converter).

Single-mode Fiber Over Multimode SFP—You Can If You Are Lucky

This is the question that has been asked so many time, but no one can give the exact answer—yes or no. Hence, let’s illustrate it in details.

Most people think single-mode and multimode fibers are not interchangable because of the wave length of the laser and core size of the fiber. Single-mode fiber (MMF) uses a laser as a light source (the light beam is very concentrated), while multimode fiber (MMF) uses an LED to generate the signal. This would require two significantly different devices to generate the signal.

The core sizes are drastically different between SMF and MMF. SMF is 9 micron and multimode is 62.5 or 50 micron. If users try to mix the single-mode and multimode cabling in the same network, they might have trouble dealing with the two different types of signal.

However, it is possible to interconnect two devices using SMF interfaces at one end and MMF receiver at the other end. Keep in mind that it depends on the devices, so you can if you are lucky. When plugging LC single-mode duplex fibers on the multimode fiber transceiver (1000GBASE-SX) in the network, you will find the link came up (the light on the switch turns green). Therefore, the multimode fiber transceiver connected by the single-mode fibers works for short-reach application. The following image is the real screenshot of the single-mode fibers inserting into the 1000BASE-SX SFP.

real screenshot of inserting single-mode fiber over multimode fiber transceivers

While it should be stressed that the link is not reliable and it only works for particular brand devices with a very short link length. Many sophisticated vendors like Huawei, Alcatel or Cisco do not support it. Nevertheless, owing to the differential mode delay (DMD) effect, signal loss of this connection is not acceptable, either.

To sum up, this might be feasible but not advisable. If you need to make a connection between single-mode and multimode interfaces, you’d better use the intermediate switch that is able to convert the signals between single-mode and multimode fibers. The following part will introduce two solutions that might be helpful for the multimode and single-mode conversion.

Solution 1: MCP Cable—Single-mode In and Multimode Out

As to the multimode fiber with single-mode SFPs, most people mention the mode conditioning patch (MCP) cables. The MCP cable is launched to support 1000BASE-LX optics over multimode cable plant. The mode conditioning cables allow customers to successfully run Gigabit Ethernet over our multimode cable using single-mode fiber transceivers, Cisco 1000BASE-LX/LH SFP is the special type of transceiver that can both support single-mode and multimode fibers. The image below displays the difference between standard SC multimode patch cable and SC mode conditioning patch cable.

comparison between standard SC multimode fiber patch cable and SC MCP cable

Then, in this situation, you can run successfully from a single-mode fiber transceiver over multimode fiber with the use of MCP cables, but the distance will not exceed the link specification for multimode transceivers. Otherwise, there will be much signal loss in the cable run.

In general, if you want to run multimode fiber optic cable over 1000BASE-LX SFPs, you can use the mode conditioning cable. However, mode conditioning patch cords are required for link distances greater than 984 feet (300 meters). For distance less than 300 m, please omit the mode conditioning patch cords (although there is no problem using it on short links).

Solution 2: Fiber to Fiber Media Converter—Conversion Between Multimode and Single-mode Fibers

As noted before, mode conditioning cables, to some extent, can realize the connection between single-mode to multimode, but you can not say that you can convert single-mode to multimode or vice versa. Mode conversion between multimode and single-mode fibers often requires fiber to fiber media converters or the single-mode to multimode fiber converter.

F2F-10G-Multimode-to-Single-mode

In the above diagram, two Ethernet switches equipped with multimode fiber ports are connected utilizing a pair of fiber-to-fiber converters which convert the multimode fiber to single-mode and enable network connectivity across the distance between Gigabit switches.

Conclusion

It doesn’t really make much sense to use the single-mode fiber transceivers with multimode fibers in your network or vice versa, although the link will come up. Like I said above, you can if you are lucky connect. MCP cables and fiber to fiber converter are the two available options for single-mode and multimode connection. If you bought the wrong fiber optic cables, just replace it into the right one. Fiber optic cables and optical transceivers modules nowadays are very cheap. You won’t need to risk of mixing them in the same network.

Original Source : Single-mode Fiber Work Over Multimode SFP Transceiver

Things You Need to Know About DWDM Transceiver

In optical communications, DWDM (Dense Wavelength Division Multiplexing) technology enables a number of different wavelengths to be transmitted on a single fiber, which makes it a popular choice among many different areas such as local area networks (LANs), long-haul backbone networks and residential access networks. In these transmission processes, DWDM transceivers play an important role. Here is a brief introduction to them.

Basics of DWDM Transceiver

DWDM transceiver, as its name shows, is a kind of fiber optic transceiver based on DWDM technology. As mentioned above, it enables different wavelengths to multiplex several optical signals on a single fiber without requiring any power to operate. And these transceivers are designed for high-capacity and long-distance transmissions, supporting to 10 Gbps and spanning a distance up to 120 km. Meanwhile, the DWDM transceivers are designed to Multi-Source Agreement (MSA) standards in order to ensure broad network equipment compatibility.

The basic function of DWDM transceiver is to convert the electrical signal to optical and then to electrical signal, which is as same as other optical transceivers. However, based on DWDM technology, DWDM transceiver has its own features and functions. It’s intended for single-mode fiber and operate at a nominal DWDM wavelength from 1528.38 to 1563.86 nm (Channel 17 to Channel 61) as specified by the ITU-T. And it is widely deployed in the DWDM networking equipment in metropolitan access and core networks.

Common Types of DWDM Transceiver

There are different types of DWDM transceiver according to different packages such as DWDM SFP transceiver, DWDM SFP+ transceiver, DWDM XFP transceiver, DWDM XENPAK transceiver and DWDM X2 transceiver. Here is a simple introduction to them.

DWDM SFP Transceiver

DWDM SFP transceiver is based on the SFP form factor which is an MSA standard build. This transceiver provides a signal rate range from 100 Mbps to 2.5 Gbps. Besides, DWDM SFP transceiver meets the requirements of the IEE802.3 Gigabit Ethernet standard and ANSI fibre channel specifications, and are suitable for interconnections in Gigabit Ethernet and fibre channel environments.

dwdm-sfp

DWDM SFP+ Transceiver

DWDM SFP+ transceiver, based on the SFP form factor, is designed for carriers and large enterprises that require a flexible and cost-effective system for multiplexing and transporting high-speed data, storage, voice and video applications. The maximum speed of this transceiver is 11.25G. It’s known to all that DWDM enables service providers to accommodate hundreds of aggregated services of sub-rate protocol without installing additional dark fiber. Therefore, DWDM SFP+ transceiver is a good choice for 10G highest bandwidth application.

dwdm-sfp-plus

DWDM X2 Transceiver

DWDM X2 Transceiver is a high performance serial optical transponder module for high-speed 10G data transmission applications. The module is fully compliant to IEEE 802.3ae standard for Ethernet, which makes it ideally suitable for 10G rack-to-rack applications.

dwdm-x2

DWDM XFP Transceiver

DWDM XFP transceiver is based on the XFP form factor which is also an MSA standard build. The maximum speed of this transceiver is 11.25G and it is usually used in 10G Ethernet. This transceiver emits a specific light. And there are different industry standards and the 100Ghz C-band is the most used one which has a spacing of 0.8 nm. What’s more, DWDM XFP supports SONET/SDH, 10GbE and 10 Gigabit fibre channel applications.

dwdm-xfp

DWDM XENPAK Transceiver

DWDM XENPAK transceiver is SC duplex receptacle module and is designed for backbone Ethernet transmission systems. It is the first 10GbE transceiver ever to support DWDM. And it can support 32 different channels for transmission distance up to 200 km with the aid of EDFAs. DWDM XENPAK transceiver allows enterprise companies and service providers to provide scalable and easy-to-deploy 10 Gigabit Ethernet services in their networks.

dwdm-xenpak

Applications of DWDM Transceiver

As the growing demand of bandwidth, DWDM technology is becoming more and more popular. And DWDM transceivers are commonly used in MANs (metropolitan area networks) and LANs. Different types of DWDM transceiver have different applications. For example, DWDM SFP transceivers are applied in amplified DWDM networks, Fibre Channel, fast Ethernet, Gigabit Ethernet and other optical transmission systems, while DWDM XFP transceivers are usually used in the fields which meet the 10GBASE-ER/EW Ethernet, 1200-SM-LL-L 10G Fibre Channel, SONET OC-192 IR-2, SDH STM S-64.2b, SONET OC-192 IR-3, SDH STM S-64.3b and ITU-T G.709 standards.

Conclusion

In summary, DWDM transceiver is an essential component in DWDM systems. Fiberstore offers various DWDM transceivers and is able to provide the advanced technology and strong innovative capability to produce the best optical components for DWDM systems. If you are interested in our products, please visit FS.COM for more detailed information.

The Basics of 1000BASE-SX and 1000BASE-LX SFP

Gigabit Ethernet has been regarded as a huge breakthrough of telecom industry by offering speeds of up to 100Mbps. Gigabit Ethernet is a standard for transmitting Ethernet frames at a rate of a gigabit per second. There are five physical layer standards for Gigabit Ethernet using optical fiber (1000BASE-X), twisted pair cable (1000BASE-T), or shielded balanced copper cable (1000BASE-CX). 1000BASE-LX and 1000BASE-SX SFP are two common types of optical transceiver modules in the market. Today’s topic will be a brief introduction to 1000BASE-LX and 1000BASE-SX SFP transceivers.

1000BASE in these terms refers to a Gigabit Ethernet connection that uses the unfiltered cable for transmission. “X” means 4B/5B block coding for Fast Ethernet or 8B/10B block coding for Gigabit Ethernet. “L” means long-range single- or multi-mode optical cable (100 m to 10 km). “S” means short-range multi-mode optical cable (less than 100 m).

1000BASE-SX
1000BASE-SX is a fiber optic Gigabit Ethernet standard for operation over multi-mode fiber using a 770 to 860 nanometer, near infrared (NIR) light wavelength. The standard specifies a distance capability between 220 meters and 550 meters. In practice, with good quality fiber, optics, and terminations, 1000BASE-SX will usually work over significantly longer distances. This standard is highly popular for intra-building links in large office buildings, co-location facilities and carrier neutral internet exchanges. 1000BASE-SX SFP works at 850nm wavelength and used only for the purposed of the multimode optical fiber with an LC connector. 1000BASE-SX SFP traditional 50 microns of multimode optical fiber link is 550 meters high and 62.5 micron fiber distributed data interface (FDDI) multimode optical fiber is up to 220 meters. Take EX-SFP-1GE-SX as an example, its maximum distance is 550m with DOM support. The 1000Base-SX standard supports the multimode fiber distances shown in table 1.

1000Base-SX standard

1000BASE-LX
Specified in IEEE 802.3 Clause 38, 1000BASE-LX is a type of standard for implementing Gigabit Ethernet networks. The “LX” in 1000BASE-LX stands for long wavelength, indicating that this version of Gigabit Ethernet is intended for use with long-wavelength transmissions (1270–1355 nm) over long cable runs of fiber optic cabling. 1000BASE-LX can run over both single mode fiber and multimode fiber with a distance of up to 5 km and 550 m, respectively. For link distances greater than 300 m, the use of a special launch conditioning patch cord may be required. 1000BASE-LX is intended mainly for connecting high-speed hubs, Ethernet switches, and routers together in different wiring closets or buildings using long cabling runs, and developed to support longer-length multimode building fiber backbones and single-mode campus backbones. E1MG-LX-OM is Brocade 1000BASE-LX SFP that operates over a wavelength of 1310nm for 10 km.

1000BASE-LX-SFP

Difference Between LX, LH and LX/LH
Many vendors use both LH and LX/LH for certain SFP modules, this SFP type is similar with the other SFPs in basic working principle and size. However, LH and LX/LH aren’t a Gigabit Ethernet standard and are compatible with 1000BASE-LX standard. 1000BASE-LH SFP operates a distance up to 70km over single-mode fiber. For example, Cisco MGBLH1 1000BASE-LH SFP covers a link length of 40km that make itself perfect for long-reach application. 1000BASE-LX/LH SFP can operate on standard single-mode fiber-optic link spans of up to 10 km and up to 550 m on any multimode fibers. In addition, when used over legacy multimode fiber type, the transmitter should be coupled through a mode conditioning patch cable.

Conclusion
1000BASE SFP transceiver is the most commonly used component for Gigabit Ethernet application. With so many types available in the market, careful notice should be given to the range of differences, both in distance and price of multimode and single-mode fiber optics. Fiberstore offers a large amount of in-stock 1000BASE SFP transceivers which are compatible for Cisco, Juniper, Dell, Finisar, Brocade, or Netgear in various options. If you have any requirement of our products, please send your request to us.

40 Gigabit Ethernet Solution

40 Gigabit Ethernet is a standard that enables the transfer of Ethernet frames at speeds of up to 40 gigabits per second (Gbps), allowing 40 Gigabit Ethernet-enabled equipment to handle traffic at the aggregation and core layers. It satisfies the greater demands for faster data transmission and higher bandwidths. Thus, the business case for 40 Gigabit Ethernet is becoming inescapably compelling although 10 Gigabit Ethernet is still making its way into data center. A right and cost-effective solution for 40 Gigabit Ethernet is very necessary for all users who want to migrate to 40 Gigabit Ethernet.

40 Gigabit Ethernet Solution

The picture above is the summary about 40 Gigabit Ethernet, explaining significantly that cables and transceivers are the basis of the whole solution. And actually, they are also the main cost of the item. Next some types of 40 Gigabit Ethernet cables and 40 Gigabit Ethernet transceivers will be introduced in details.

40 Gigabit Ethernet Cables

The cable applied in 40 Gigabit Ethernet can be optical fiber or copper cable. The copper cable for 40 Gigabit Ethernet is designed for short reach, up to at least 7 m. As to optical cable, there are two types: singlemode cable and multimode cable. The transmission distance of multimode cable for 40 Gigabit Ethernet can be up to 150 m, which is much shorter than the transmission distance of singlemode cable (It can be up to 10 km). Generally, the common used types are OM3 and OM4 multimode cables in that its reach supports a wider range of deployment configurations compared to copper solutions, and the cost is lower compared to singlemode solutions.

What is more, the MPO (Multi-Fiber Push On)/MTP (Multi-fiber Termination Push-on) cable is considered the best solution for 40GbE. It can connect the multimode transceivers to support the multifiber parallel optics channels. For 40 Gigabit Ethernet, we can use 8 fibers MPO/MTP harness cables or 12 fibers MPO/MTP trunk cables. The former is to directly connect a QSFP port to other 4 SFP+ ports. The latter is to directly connect one QSFP port to another QSFP port. Here is a picture to help you know it clearly.

MTP Cable

40 Gigabit Ethernet Transceivers

According to different standard form factors, 40 Gigabit Ethernet transceivers can be divided into different types, such as CFP transceiver, CXP transceiver and QSFP transceiver, ect.

CFP transceiver, which has 12 transmit and 12 receive 10-Gbps lanes, can support one 100 Gigabit Ethernet port, or up to three 40 Gigabit Ethernet ports. This module is used for 40GBASE-SR4, 40GBASE-LR4. The former is based on 850nm technology and supports transmission over at least 100m OM3 parallel fibers and at least 150m OM4 parallel fibers, while the latter is based on 1310nm , coarse wave division multiplexing (CWDM) technology and supports transmission over at least 10km on singlemode fiber.

CXP transceiver also has 12 transmit and 12 receive 10-Gbps lanes as well as CFP transceiver, supporting one 100 Gigabit Ethernet port or up to three 40 Gigabit Ethernet ports. Compared with CFP transceiver, the size of it is much smaller. And it is mainly designed for the high-density requirements of the data center, serving the needs of multimode optics and copper.

QSFP transceiver provides four transmit and four receive lanes to support 40 Gigabit Ethernet applications for multimode fiber and copper today. The size of it is the same with CXP transceiver. It is mainly designed to support Serial Attached SCSI, 40G Ethernet, PCIe, 20G/40G Infiniband, and other communications standards.

Fiberstore 40 Gigabit Ethernet Solution

Fiberstore can offer customers 40 Gigabit Ethernet connectivity options for data center networking, enterprise core aggregation, and service provider transport applications. Since the products are all in good quality and low price, it may be the best choice for you to deploy the network.

Related article: http://www.chinacablesbuy.com/how-much-do-you-know-about-40g-transceiver.html

A Cost-effiective Solution – Cisco Compatible SFP

According to the report of Gartner, Cisco has taken up almost half of the global network equipment market share (totally $38 billion), ahead of other competitors in the telecommunication industry. To a large extend, it is the switches’ market share that attributes to this success. Cisco SFP is the small form factor pluggable module that is usually plugged into the switch. But its price is very high, even up to thousands of dollars. The highly cost is the reason why many customers hesitate to buy it. So in this case, in order to offer a cost-effective solution for you, Cisco compatible SFP in Fiberstore comes around.

Why Choose Fiberstore

Cisco compatible SFP offered by Fiberstore are the most cost-effective standards-based SFP modules fully compatible with Cisco switches & routers. The main advantage of Cisco compatible SFP over Cisco SFP is its cost, which makes it become the cost-effective solution. Here we are going to give a price comparison by taking some examples.

Model Number Price of Cisco compatible SFP Price of Cisco SFP
GLC-T $16.00 $ 395.00
GLC-LH-SMD $7.00 $ 995.00
GLC-LH-SM $7.00 $ 995.00
GLC-SX-MM $6.00 $ 500.00

With this great advantage, Fiberstore has become one of the best-sellers in this industry. What is more, besides the above kinds, various kinds of Cisco Compatible SFPs with good quality and service are also offered here.

Features & Applications of Fiberstore Cisco Compatible SFP

The capacity of Fiberstore Cisco compatible SFP modules is as good as Cisco SFP. They are both of low-power consumption, operating on Cisco switches steady. Generally, there are three kinds of Cisco compatible SFP modules designed to used for three main applications. They are Fast Ethernet SFP, Cisco Gigabit Ethernet SFP and WDM SFP. Next, each application will be given a brief description.

Fast Ethernet SFP – Fast Ethernet SFP comes in six configurations which can be described as the Cisco 100BASE-X SFP. It is a hot-swappable input/output device that plugs into Fast Ethernet ports, dual-rate Fast/Gigabit Ethernet ports, or Gigabit Ethernet ports of a Cisco switch or router, linking the port with the fiber cabling network. One of its configuration is 100BASE-FX SFP, operating on ordinary multimode fiber optic (MMF) link spans up to 2 kilometers long. But there is a point you should note that Cisco offers two products for 100BASE-FX. One is GLC-FE-100FX is for 100Mbps Ethernet ports, and the other one is GLC-GE-100FX is for Gigabit Ethernet ports. Both products can be found in Fiberstore with compatible solution.

100BASE-FX SFP

Gigabit Ethernet SFP – SFP for Gigabit Ethernet can be described as Cisco 1000BASE-X SFP, which plugs into a Gigabit Ethernet port or slot. Compared with Fast Ethernet SFP, its speed and capacity are better. And currently, it still plays an important part in the telecommunication networks. For example, 1000BASE-SX SFP, which is a cost effective module with high performance, can support dual data-rate of 1.25 Gbps/1.0625 Gbps and 550m transmission distance with MMF.

1000BASE-SX SFP

CWDM & DWDM SFP – The speed of CWDM & DWDM SFP can be up to 10 Gbps, with a full options of wavelength for both CWDM and DWDM applications. They both allow enterprises, companies and service providers to provide scalable and easy-to-deploy Gigabit Ethernet and Fibre Channel services in their networks.

Nowadays, Fiberstore has become one of the leaders in compatible optical transceiver modules global manufacturer and supplier trade. At present, there are a lot of discounts for bulk orders in Fiberstore. For more information, please contact us directly over e-mail sales@fs.com.

100% Compatible SFP Transceiver Modules

Introduction of SFP Transceiver Module

SFP (Small Form Pluggable) optical module is a compact transceiver used for both telecommunications and data communication applications. It can interface a network device motherboard (for a switch, router, media converter or similar device) to a Fiber Channel or Gigabit Ethernet (GbE) optical fiber cable at the other end. Due to its small size, it has replaced the formerly ubiquitous Gigabit Interface Converter (GBIC) gradually. And now it becomes the most used fiber optic transceiver module in the fiber communication industry.

SFP Module Series

SFP transceivers are available in a wide range of data rates and fiber coverages, which allows users to choose the most suitable transceiver for each link. Most used SFP transceivers are the 1.25 Gbps transceiver modules which are of different transmitter and receiver types such as 1000BASE-T, 1000BASE-SX, 1000BASE-LX/LH, etc. Here depict such kinds of transceivers.

1000BASE-SX SFP Transceiver

SFP-1G85-5M-xx 1000BASE-SX SFP transceiver is a cost effective 850nm module supporting dual data-rate of 1.25Gbps/1.0625Gbps. It is compatible with the IEEE 802.3z 1000BASE-SX standard and operates multimode fibers link up to 550 m. The fiber optic transceiver consists of three sections: a VCSEL laser transmitter, a PIN photodiode integrated with a trans-impedance preamplifier (TIA) and MCU control unit. It is usually applied for Fiber Channel links, Gigabit Ethernet links, Fast Ethernet links, etc.1000BASE-SX SFP transceiver

1000BASE-LX/LH SFP Transceiver

1000BASE-LX/LH SFP transceiver is a high performance 1310nm transceiver for single-mode fibers. It is compatible with the IEEE 802.3z 1000BASE-LX standard and also supports dual data-rate of 1.25 Gbps/1.0625 Gbps with a transmission distance of 10 /15 /20 km. It has three part numbers: SFP-1G31-10-xx, SFP-1G31-15-xx and SFP-1G31-20-xx. The transceiver consists of three sections: a FP laser transmitter, a PIN photodiode integrated with a trans-impedance preamplifier (TIA) and MCU control unit. It is commonly applied for Gigabit Ethernet links, Fiber Channel Switch Infrastructure and other optical transmission systems.1000BASE-LX/LH SFP Transceiver

10/100/1000BASE-T SFP Transceiver

SFP-1GTA-1M-xx 10/100/1000BASE-T SFP Transceiver is compatible with the Gigabit Ethernet standard as specified in IEEE STD 802.3. It supports data rates of 10/100/1000 Mbps, fully satisfying 10/100/10001000BASE-T applications such as LAN 10/100/1000Base-T Fiber Channel links, Gigabit Ethernet over Cat 5 Cable, Switch to Switch Interface, Router/Server interface, etc.10/100/1000BASE-T SFP Transceiver

Fiberstore Solutions

Fiberstore is a professional manufacturer and supplier for transceiver solutions. We offer such modules which are 100% compatible with large inventories. All those modules are delivered on the day for your convenience. In addition, we are committed to high-quality products and long-term customer confidence with providing return and warranty services. The detailed ordering information is as followed. If interested in our products, you can visit www.fs.com or contact us over sales@fs.com.

Module # Data Rate Transmission Distance Connector Type Price Inventory
1000BASE-SX SFP Transceiver ≤ 1.25 Gbps 550 m LC US$ 8.00 2000
1000BASE-LX/LH SFP 1310 nm Transceiver ≤ 1.25 Gbps 10/15/20 km LC US$ 10.00 5500
10/100/1000BASE-T SFP Transceiver 10/100/1000 Mbps 100 m RJ45 US$ 18.00 1000

Originally published at: www.fiber-optic-equipment.com

The application of DWDM integration systems in MSPP

Traditionally, SONET platforms have been dedicated to services that could be encapsulated within SONET frames. Today vendors not only can deliver SONET services from MSPPs, but they also can hand off these services in a DWDM wavelength service.

DWDM can be implemented with an MSPP in two ways. Most often when you think about DWDM systems. However, the multiplexing of multiple light source is always a “passive” activity. Wavelength conversion and amplification is always the “active” DWDM activity.

MSPP chassis with integrated DWDM optics in which the optics cards (in this case, OC-48s) use one of the ITU wavelengths and interfaces to an external filter. This filter multiplexes the wavelengths from various optics cards within multiple chasses and transports them over the fiber, where they are demultiplexed on the MSPP because the filter is a separate device.

This inefficient use of the rack and shelf space has led to the development of active DWDM from the MSPP. With active DWDM, the transponding of the ITU wavelength to a standard 1550-nm wavelength is performed by converting the MSPP shelf into various components required in a DWDM system. This conversion has greatly increased the density of wavelengths within a given footprint. For example the kind of passive DWDM, only 16 wavelengths could be configured within a bay, 4 per chassis. With today’s multiport, multiport optical cards, this density can be doubled to 8 wavelengths per shelf and 32 per rack.

With the integrated active DWDM solution, one MSPP chassis can be converted into a 32-channel multiplexer/demultiplexer using reconfigurable optical add/drop multiplexer (ROADM) technology. Other chassis can be converted into a multiplexer (OADM), which can receive and distribute multiple wavelengths per shelf. The implication of this is that up to 32 wavelengths can be terminated within a bay or rack, a factor of eight times the density of even early MSPPs using a passive external filter. The traffic from within each wavelength dropped into an MSPP shelf from the ROADM hub shelf can be groomed or extracted from the wavelengths carrying it, as needed, and dropped out of the OADM shelves. ROADM is an option that can be deployed in place of fixed-wavelength OADMs. Cisco Systems ROADM technology, for example, consists of two modules: 32-channel reconfigurable multiplexer (two-slot module), 32-channel reconfigurable demultiplexer (one-slot module). Use of software-provisionable, small form-factor pluggable(SFP)client connectors, and wavelength tunability for reduced card inventory requirements. Multilever service monitoring: SONET/SDH, G.709 digital wrapper, and optical service channel for unparalleled service reliability.

MSPP chassis

With so many advantages, one of the disadvantages is that parading shift is required to move the market toward MSPP-based DWDM. This slow migration is keeping vendors at bay in terms of development as they try to balance investment in the future with today’s revenue. The widespread introduction of this technology, however, DWDM price also should be considered. The price of DWDM transceivers is typically four to five times more expensive than that of their CWDM counterparts. The higher DWDM transceiver costs are attributed to a number of factors related to the lasers.

Several ways exist for protecting an MSPP-based DWDM system in the event of a fiber cut or signal degradation. Such protection options include client protection, Y-cable protection, and wavelength splitting.

Reliability for these options varies, depending on the client network architectures and service-level agreements (SLA) provided to the client. Thus, there is no “one size fits all” approach to protection.

Related websites: http://www.fs.com

How Much Do You Know About CWDM SFPs?

You must be very interested in some SFP modules which are with colorful markings, such as color arrow on label and color coded bale clasp. But do you know what are these colorful SFPs used for? And why are they designed as several color? This paper is going to introduce one type of these colorful SFP transceiver modules.

These SFPs with color arrow on label and color coded bale clasp are called WDM(Wavelength Divison Multiplexing) SFPs. WDM SFPs are devided into two basic types. One is CWDM(Coarse Wavelength Divison Multiplexing) SFPs, and the other one is DWDM(Dense Wavelength Division Multiplexing) SFPs. This paper is mainly about the CWDM SFPs. The different colors represent different wavelength.

What’s CWDM SFP? CWDM SFP is a kind of optical transceiver which combines the CWDM technology. Similar with the traditional SFPs, CWDM SFP is also a hot-swappable input/output device that plugs into an SFP port or slot of a switch or router, and links the port with the fiber-optic network. It is a convenient and cost-effective solution for the adoption of Gigabit Ethernet and Fibre Channel (FC) in campus, data-center, and metropolitan-area access networks.

Fiberstore-Cisco-compatible-CWDM-SFPs

CWDM SFPs With Different Wavelengths In general, CWDM SFPs come in eight wavelengths that range from 1470 nm to 1610nm. In order to better identify the wavelength to which the Gigabit Ethernet channel is mapped when using these CWDM SFPs, we use the color markings on the devices, such as color arrow on label and color coded bale clasp to achieve it. This is why there are many SFPs with different colors for applications. Here, we take Cisco for example. Here, we take Cisco for example. The following table lists the CWDM SFPs with their wavelength and color codes.

cisco cwdm sfp information

Standards and Regulatory Compliance

  • RoHS compliant
  • IEEE Std 802.3 (Gigabit Ethernet 802.3z,802.3ah, FastE 802.3u)
  • Fibre Channel Draft Physical Interface Specification FC-PI-2
  • Compliant with SONET/SDH optical standards
  • SFP MSA (multi-source agreement)

Protocols and Data Rates

  • Fast Ethernet (125Mbps)
  • Gigabit Ethernet (1.25Gbps)
  • 1G and 2G Fibre Channel
  • SONET OC-3 (155Mbps), OC-12 (622Mbps), and OC-48 (2.488Gbps)

Fiberstore CWDM SFPs Solution Fiberstore offers a cost-effective CWDM SFPs solution which is 100% compatible with many devices of major brands, e.g. Cisco, HP or Juniper etc. Compatible CWDM SFPs with multi-rate transceiver for data rates from 100 Mbps up to 4 Gbps, transfer distance at 20 to 40km, 40 to 80km and 80 to 120km as well as different color marking options are available in Fiberstore which can better satisfy the different requirements on parameters of our clients. CWDM SFP transceivers also feature digital diagnostics, also known as digital optical monitoring (DOM), which is supported by the majority of switch and router OEMs in their operating system software.

CWDM-SFP-COLOR-CODING

For Cisco users, we highly recommend our CWDM SFP products, such as CSFP-1G47-80-CO, CSFP-1G49-80-CO, CSFP-1G51-80-CO, CSFP-1G53-80-CO, CSFP-1G55-80-CO, CSFP-1G57-80-CO, CSFP-1G59-80-CO, CSFP-1G61-80-CO that are the corresponding compatible CWDM SFPs of Cisco’s. Additionally, we can offer other products which are the custom version for Cisco compatible. Actually, more products are waiting for you. If you want to order other brand compatible or get more information about these products, we welcome you to visit our website or contact us over E-mail sales@fs.com directly.

Discussion of DWDM Technology Development Oppotunity

We all have a knowledge of fiber CWDM multiplexer. but how to choose suitable solution is what we need to know. As we know, because of its costs, DWDM is more suited to longer-reach applications if developers begin to value the real requirements are in the metro access/metro core space. DWDM is a useful solution for high-growth routes that have an immediate need for additional bandwidth. According to vendors, carrying that are building or expanding their long distances networks could find DWDM to be an economical way to incrementally increase capacity, rapidly provision needed expansion, and “future-proof” their infrastructure against unforeseen bandwidth demand.

DWDM is well suitable for long-distance telecommunications operators when we use either point-to-point or ring topologies. The availability of 16, 32, or 64 new transmission channels, where there used to be one, improves an operator’s ability to expand capacity and simultaneously set aside backup bandwidth without installing new fiber. Proponents make the case that this large amount of capacity is critical to the development of self-healing rings. By deploying DWDM terminals, an operator can construct a protected 40 Gbps ring with 16 separate communication signals using only two fibers. However, unless there is a major underlying engine continuously driving the demand through the roof, this kind of technology is a “one-time (in a long time) upgrade,” with obvious market-sizing implications.

There has been a lot of hype in the recent past about metro 10gbase DWDM, Some supporters of DWDM claim that the acceptance of the technology will drive the expansion of the optical layer throughout the whole telecommunications network and allow service providers to exploit the bandwidth capacity that is inherent in optical fiber,But at present there are still a lot to be exploited. The widespread introduction of this technology, however, could at the same time will appear a lot of problems, it will lead to a long distances bandwidth glut and price disruptions, and set expectations for price points at the metro access/metro core that may or may not be achievable. Finally, one finds with some satisfaction the following quotes:”With so much unused fiber, when will metro nets really need WDM? What are the requirements for 40 Gbps systems? What are the new economic trade-offs between transparency and grooming. And which of the new service providers will succeed?”.

The related question for the current discussion is whether DWDM has practical application to the metro access/metropolitan environments, probably for a handful of POP-to-POP rings. If DWDM systems now in the market were redesigned to be optimized according to the requirements for metropolitan environments,  there could be increased applicability. If the systems were redesigned to meet specific price points, then their applicability would be enhanced. When the long distances industry saw major retrenchments at the turn of the decade, a number of optical vendors took the easy course of relabeling the equipment that had been developed by them for long distances applications and pasted a “metro DWDM” label onto the equipment while at the same time generating new marketing collaterals, rather than redeveloping, as would have been more appropriate equipment that is optimized and right -sized for metro access/metro core applications from both density and cost points of view. It appears that, at least for the next few years, the opportunity for metro DWDM is somewhat limited. As noted earlier, this technology may see some penetration in a metro core application of POP-to-POP rings, but extremely limited application in the metro access segment.

Systems with DWDM technology have been used extensively in the long distances space and typically cos from 100 thousands to 1000 thousands dollars or more. There are economic advantages in using DWDM when the transmission costs are high, such as in long distances applications. Such use is justified by standard transmission -versus-multiplexing cost calculations. For example, to transmit 40 Gbps over 600 km using a traditional system would require 16 separate fiber pairs with regenerators placed every 35 km for a total of 272 regenerators. dense wavelength division multiplexing equipment, on the other hand, uses a single fiber pair and four amplifiers positioned every 120 km for a total of 600 km. At the same time, new Extended Wavelength Band (EWB) fiber is being introduced that allows a wider range of operation for the transmission system; some Coarse Wavelength Division Multiplexing equipment (which is more ideal for metropolitan environment) will make use of the E-band.

Even in long distances applications, design considerations aimed at optimizing the cost profile are not always straightforward. In particular, TDW-only solutions supporting increasing speed have kept pace with a number of advantage in the WDM technology during the mid-to-late 1990s, at least for medium-size trunking application (up to 10Gbps). For example, a TDM-based solution has only one 10 Gbps SONET terminal. A WDM system that transports an aggregate capacity of 10 Gbps requires four 2.5 Gbps terminals in addition to a WDM terminal per end. Because TDM technology has typically quadrupled its capacity for a cost multiplier of 2.2, the 10 Gbps solution appears to be more cost-effective. However, if the TDM system also requires four 2.5 Gbps terminals to provide the first stage of multiplexing, the 10 Gbps solution might actually be more costly, and but we have to note that if the 2.5 Gbps terminals are already in the network, they represent a sunk cost and might not be included in the cost analysis.

Before optical line amplifiers were developed and deployed, high-speed TDM-based systems were more cost-effective than WDM because the TDM systems allowed multiple lower-speed electronic regenerators at a point in the network to be replaced with a single higher-speed regenerator at that point in the network; originally, this was not the case with the WDM design. The introduction of optical line amplifiers with the ability to amplify the entire ITU grid frequencies simultaneously allows multiple lower-speed electronic regenerators at a site to be replaced with one optical amplifier, making WDM more cost-effective.

Fiberstore designs, manufactures, and sells a broad portfolio of optical communication products, including passive optical network, or PON, subsystems, optical transceivers used in the enterprise, access, and metropolitan segments of the market, as well as other optical components, modules, and subsystems. In particular, Fiberstore products include DWDM related professional components. Welcome to visit our online store to know more about DWDM information anytime.