Tag Archives: fiber optic cable

Fiber Patch Panel Color Code

Data center is regarded as the heart of a company’s information, for the customer’s information, staff’s information and even the research information are stored here. When it gets into trouble, so does the business. Cable management is one of the issues that may affect the data center operation. While managing the cabling in data center, fiber patch panel color code is certainly included.

Overview of Color Code System

Color code is defined as a system that uses various kinds of colors to tell people something. The earliest application of color code is using flags for long distance communication such as flag semaphore communication. As our society and technology advanced, this method has been widely used in many fields, chemistry, telecommunication, and even the military. It became convenient to use different colors as signals for telling apart the confused or similar things. For example, the fiber cables in electronic installations. Color coding can help users easily distinguish whether the fiber optic cables is single mode cables or multimode ones.

However, different countries may use different color code standards. In Sweden, they introduced the S12 color code for micro cables and nano cables while Finland developed the color code called FIN2012. Fortunately, there is a global recognized standard named TIA/EIA-598 color codes.

Introduction of TIA/EIA-598 Color Codes Standard

The standard is developed by Telecommunications Industry Association.  It rules identification schemes for fiber optic cables, fiber units and other fiber equipment. Fiber optic cable is split into several strands. They are the single fibers in a large cabling. And in this way, there will be 24 individual strands. After the process, the strands are usually divided into 12 tubes. Each tube containing 12 strands is given a color. In telecommunication industry, all fibers should use recommended method based on the widely acknowledged standard for their individual details and unique color code.

patch panel color code fiber

Benefit of Using Color Code

Better cable management is the best benefit of fiber patch panel color code. In data center, there are always brunches of cables and facilities. When the configuration of network or cabling needs to be changed for introducing new or more devices, the technicians have to spend large amount of time to deal with the chaotic cables. But now, with the help of fiber patch panel color code, just at a glance, the technicians can easily and quickly tell apart which cable should be unplugged or connected. It’s not only a perfect way to increase efficiency for technology workers who are responsible for installing, troubleshooting and maintaining the network, but also an effective mean of saving staff’s time so that they may go home on time.


Fiber patch panel color code simplifies network management by providing a visual identification of every cable. This cost-effective and easy-to-use method can help users route cables in an easier and more accurate way, reducing network errors and making maintenance easier. FS.COM always remains focused on researching and developing ways for a better network.

Single Mode Fiber Distance

Fiber optic cable is the essential media in telecommunication system for transmitting information. According to different categories, while depending on fiber connectors, patch cable can be considered as LC fiber, FC fiber, SC fiber, ST fiber and so on, it is well known that fiber optic cable can be divided into single mode fiber and multimode fiber based on transmission paths. Today, we will learn more about the single mode fiber distance.

Single Mode Fiber Overview

Single mode fiber derives its name from the fact that it only allows one mode of light to pass through their core at a time. Commonly, single mode fiber is designed with a narrow core diameter of 8 to 10 micrometers, which is much smaller than multimode fiber of 50 or 62.5 micrometers.

Before we continue, we need to be clear that due to different mode of propagation, there is modal dispersion during the signal spreading. And transmission distance is greatly influenced by the dispersion. Luckily, because of the allowance of just one mode of light, single mode fiber have the ability to transmitting data for miles without losing too much data. Thus it can readily carry information for a longer distance than the light used in the multimode fiber.

single mode fiber

OS1 vs OS2

OS1 and OS2 are the two types of single mode fiber, here the term OS refers to optical single mode fiber. Both of them are suitable for Gigabit applications and have the same jacket color.

OS1 cable is indoor tight buffered fiber that is compliant with ITU-T G.652A or ITU-T G.652B standards. The attenuation of this type is 1dB per kilometer with a top transmission distance of 2 km at 10 Gigabit Ethernet. It works between 1310 nm and 1550 nm.

OS2 cable is outdoor loose tube fiber optic cable that comply with ITU-T G.652C and ITU-T G.652D specifications. It has an attenuation of 0.4 dB between 1310 nm and 1550 nm, with a maximum transmission distance of 10 km at 10Gigabit Ethernet.

Selection on Different Distances

Single mode fiber provides a greater transmission distance. When choosing the right fiber cable, the most crucial thing that must be taken into consideration is how far the cable could support. In addition, the transmission distance is also related to the optics that users apply in the equipment.

Technology Bandwidth Wavelength Distance
1000BASE-LX 1000Mbps 1310nm 10km
10GBASE-LR 10Gbps 1310nm 10km
40GBASE-ER4 40Gbps 1310nm 40km
40GBASE-LR4 40Gbps 1310nm 10km

According to the above form, we can clearly see that transmission distance varies greatly. At different transmission rate, the distance changes. Distance of single mode fiber can reach 40km at the speed of 40gigabit Ethernet, and it will be 10km with the speed of 10gigabit Ethernet. Thus, try to buy fiber cable of suitable length for your project based on your network speed and some other actual situations. Thus, try to buy fiber cable of suitable length for your project based on your network speed and some other actual situations.


Transmission distance of single mode fiber is an important factor when people set up a network especially in data center that requires data to deliver over long distances. FS.COM provides a number set of OS1 fiber, OS2 fiber, LC fiber, SC fiber and so on. The products have passed many quality system verification such as CE, FCC. Come and choose your favored cables at FS.COM.

Why is Fiber Optic Cable a Better Choice Than Copper Cable?

Nowadays, you can see fiber optics is deployed in many industries, most notably in telecommunications and computer networks. As a result, fiber optic cable is widely used. On the contrast, the utilization of copper cable declines. And as the construction of fiber optics develops further, some entrepreneurs even announced that fiber optic cable will replace copper cables. In spite that these words are not authoritative and unbelievable, we still can see the prospect of fiber optic cable is excellent. So here comes the question: Why is fiber optic cable a better choice than copper cable?

What Are Fiber Optic Cable and Copper Cable?

Fiber optic cable is a cable containing one or more optical fibers that are used to carry light. (And it can be connected with LC, ST and some other connectors. For example, LC fiber optic cable, one kind of fiber optic patch cord, consists of optical fiber with a connector whose type is LC.) Commonly, fiber optic cable can be divided into single-mode fiber and multi-mode fiber. Single-mode fiber cable sends signals with laser light, while multi-mode fiber sends signals with light-emitting diodes or LEDs. The thickness and diameter of multi-mode cable are bigger than the single-mode cable’s.

Copper cable is a cable made by copper medium. In copper networks, copper cable is the key component which can be divided into three sub-types: unshielded twisted pair (UTP), screened twisted pair (F/UTP) and shielded twisted pair (S/FTP). And the main medium of signal transmission in copper cable is twisted pair.

Advantages of Fiber Optic Cable Over Copper Cable

There are some aspects that can show fiber optic cable is a better choice than copper cable. And in order to give you a visual description, here is a table below of the comparison of fiber optic cable and copper cable so that you can know it clearly. Also, we will talk about some relative importance of these points in detail.

optical cable vs. copper cable

Higher carrying capacity and wider transmission band: Optical fibers are thinner than copper wires, so more fibers can be bundled into a given-diameter cable than copper wires, allowing more phone lines to go over the same cable or more channels to come through the cable into your business or home. The bandwidth of fiber optics can be up to 50000GHz. For instance, optical fiber system with speed of 2.4Gb/s can transmit more than 3000 phone lines at the same time.

Less signal degradation: The loss of signal in optical fiber is less than in copper wire. Recently, the attenuation of optical fiber is declined to 0.2dB/KM. Therefore, the distance of signal transmission can be longer, even more than a few hundred kilometers because of less attenuation. And also, because the signals degrade less, it can use low power transmitter to transmit signals instead of the high-voltage electrical transmitters needed for copper wires so that it can save some cost.

Light signals: In fiber optic cables, light signals from one fiber do not interfere with those of other fibers in the same cable, which is greatly different from the electric signals in copper cables. This feature means there would be a clearer phone conversation or TV reception using fiber optic cables.

At present, there is point we should admit that copper cable shares most parts of the market. But with so many advantages over copper cable, fiber optic cable will have a bright future.