Tag Archives: optical amplifier

EDFA vs Raman Optical Amplifier

Although the fiber loss limits the transmission distance, the need for longer fiber optical transmission link seems never ending. In the pursuit of progress, several kinds of optical amplifiers are published to enhance the signals. Hence, longer fiber optical transmission link with big capacity and fast transmission rate can be achieved. As the EDFA and Raman amplifiers are the two main options for optical signal amplification. which one should be used when designing long fiber optical network? What are the differences of the two optical amplifiers? Which one would perform better to achieve the long fiber optical link? And which one is more cost effective? Let’s talk about this topics.

What’s EDFA Amplifier?

EDFA (Erbium-doped Fiber Amplifier), firstly invented in 1987 for commercial use, is the most deployed optical amplifier in the DWDM system that uses the Erbium-doped fiber as optical amplification medium to directly enhance the signals. It enables instantaneous amplification for signals with multiple wavelengths, basically within two bands. One is the Conventional, or C-band, approximately from 1525 nm to 1565 nm, and the other is the Long, or L-band, approximately from 1570 nm to 1610 nm. Meanwhile, it has two commonly used pumping bands, 980 nm and 1480 nm. The 980nm band has a higher absorption cross-section usually used in low-noise application, while 1480nm band has a lower but broader absorption cross-section that is generally used for higher power amplifiers.

The following figure detailedly illustrates how the EDFA amplifier enhance the signals. When the EDFA amplifier works, it offers a pump laser with 980 nm or 1480 nm. Once the pump laser and the input signals pass through the coupler, they will be multiplexed over the Erbium-doped fiber. Through the interaction with the doping ions, the signal amplification can be finally achieved. This all-optical amplifier not only greatly lowers the cost but highly improves the efficiency for optical signal amplification. In short, the EDFA amplifier is a milestone in the history of fiber optics that can directly amplify signals with multiple wavelengths over one fiber, instead of optical-electrical-optical signal amplification.

EDFA Amplifier Principle

What’s Raman Amplifier?

As the limitations of EDFA amplifier working band and bandwidth became more and more obvious, Raman amplifier was put forward as an advanced optical amplifier that enhances the signals by stimulated Raman scattering. To meet the future-proof network needs, it can provide gain at any wavelength. At present, two kinds of Raman amplifiers are available on the market. One is lumped Raman amplifier that always uses the DCF (dispersion compensation fiber) or high nonlinear fiber as gain medium. Its gain fiber is relatively short, generally within 10 km. The other one is distributed Raman amplifier. Its gain medium is common fiber, which is much longer, generally dozens of kilometers.

When the Raman amplifier is working, the pump laser may be coupled into the transmission fiber in the same direction as the signal (co-directional pumping), in the opposite direction (contra-directional pumping) or in both directions. Then the signals and pump laser will be nonlinearly interacted within the optical fiber for signal amplification. In general, the contra-directional pumping is more common as the transfer of noise from the pump to the signal is reduced, as shown in the following figure.

Raman Amplifier Principle

EDFA vs Raman Optical Amplifier: Which One Wins?

After knowing the basic information of EDFA and Raman optical amplifiers, you must consider that the Raman amplifier performs better for two main reasons. Firstly, it has a wide band, while the band of EDFA is only from 1525 nm to 1565 nm and 1570 nm to 1610 nm. Secondly, it enables distributed amplification within the transmission fiber. As the transmission fiber is used as gain medium in the Raman amplifier, it can increase the length of spans between the amplifiers and regeneration sites. Except for the two advantages mentioned above, Raman amplifier can be also used to extend EDFA.

However, if the Raman amplifier is a better option, why there are still so many users choosing the EDFA amplifiers? Compared with Raman amplifier, EDFA amplifier also features many advantages, such as, low cost, high pump power utilization, high energy conversion efficiency, good gain stability and high gain with little cross-talk. Here offers a table that shows the differences between EDFA and Raman optical amplifiers for your reference.

Property EDFA Amplifier Raman Amplifier
Wavelength (nm) 1525-1565, 1570-1610 All Wavelengths
Gain (dB) > 40 > 25
Noise Figure (dB) 5 5
Pump Power (dBm) 25 > 30
Cost Factor Relatively Low Relatively High

Considering that both EDFA and Raman optical amplifiers have their own advantages, which one should be used for enhancing signals, EDFA amplifier, Raman amplifier or both? It strictly depends on the requirement of your fiber optical link. You should just take the characteristics of your fiber optical link like length, fiber type, attenuation, and channel count into account for network design. When the EDFA amplifier meets the need, you don’t need the Raman amplifier as the Raman amplifier will cost you more.

How to Enhance the Optical Signals for a Long DWDM System?

As we know, the longer the optical transmission distance is, the weaker the optical signals will be. For a long DWDM system, this phenomenon easily causes transmission error or even failure. Under this case, what can we do for a smooth, long DWDM system? The answer is optical signal enhancement. Only by enhancing the optical signals, can the DWDM transmission distance be extended. In this post, we are going to learn two effective solutions, optical amplifier (OA) and dispersion compensation module (DCM) to enhance the signals, for making a smooth, long DWDM system.

Optical Amplifier Solution

We used to utilize repeater to enhance the signals in fiber optics, which should firstly convert the optical signals into an electrical one, amplify the electrical signals, and then convert the electrical signals into an optical one again. Finally, you can get the enhanced optical signals. However, this method of enhancing signals can not only cause more signal loss, but also add unwanted noises in the actual signal. Taking these issues into account, the optical amplifier is more recommendable.

An optical amplifier is a device that enables direct optical signal enhancement or amplification. Its working principle is not so complicated as that of the repeater, while its performance is much higher. From the following figure, we can learn that the original reach of the DWDM system is limited to 80 km due to the signal loss. But with the optical amplifier, the signals are enhanced and the reach can be extended to 160 km. It is really an ideal option to enhance the signals for a long DWDM system.

Optical Amplifier (OA)

At present, there are mainly three major kinds of optical amplifiers, Semiconductor Optical Amplifier (SOA), Doper Fiber Amplifier (DFA), and Raman Amplifier (RA).

Semiconductor Optical Amplifier: as its name implies, the semiconductor in a SOA is used to offer the gain medium. This kind of optical amplifier has a similar structure to the FP laser diode. However, it is designed with anti-reflection elements at the end face that can greatly reduce the end face reflection. Meanwhile, the SOA features small package and low cost that suits for most users to enhance the optical signals.

Doper Fiber Amplifier: in a DFA, the doped optical fiber acts as the gain medium for signal amplification. When the DFA works, the signal to be amplified and a pump laser are multiplexed into the doped fiber. And then the signal is amplified through interaction with the doping ions. The most common DFA is the Erbium Doped Fiber Amplifier (EDFA). Its gain medium is a optical fiber doped with trivalent erbium ions that always enhances the signals near 1550nm wavelength. Undoubtedly, the EDFA is a great choice to enhance the optical signals.

Raman Amplifier: different from the SOA and DFA, the signal in a RA is amplified through the nonlinear interaction between the signal and a pump laser within an optical fiber. In details, two kinds, distributed and lumped Raman amplifier (DRA and LRA) are available on the market. The distributed one multiplexes the pump wavelength with signal wavelength through the transmission fiber to enhance the signals, while the amplification of the lumped one is provided by a dedicated, shorter length of fiber.

(Note: if you want to know more information about these three kinds of optical amplifier, you can take the previous post Optical Amplifier Overview as reference.)

Dispersion Compensation Solution

Apart from signal amplification, we can also use dispersion compensation to enhance the optical signals. Once the dispersion occurs, the signal will be tended to skew due to the different frequencies, which has a negative effect on the quality of signal transmission. At that moment, we use the dispersion compensation module to enhance the skew signal, for achieving a longer transmission distance. As shown in the figure below, the DWDM system is extended to longer than 80 km with the use of 80km passive dispersion compensation module.

Dispersion Compensating Module (DCM)

The dispersion compensation module is an important component for a long fiber optical link. It typically connects to the mid-stage of an OA like EDFA, in the long haul transmission system. Except for the 80km DCM mentioned above, FS.COM also provides other DCM modules that allow long transmission distance extension. The compensation distances can range from 10km to 140 km, as shown in the following table.

Module Type Description Price
FMT10-DCM 10KM Passive Dispersion Compensation Module, Plug-in Type, LC/UPC US$ 430.00
FMT20-DCM 20KM Passive Dispersion Compensation Module, Plug-in Type, LC/UPC US$ 650.00
FMT40-DCM 40KM Passive Dispersion Compensation Module, Plug-in Type, LC/UPC US$ 650.00
FMT60-DCM 60KM Passive Dispersion Compensation Module, Plug-in Type, LC/UPC US$ 1,100.00
FMT80-DCM 80KM Passive Dispersion Compensation Module, Plug-in Type, LC/UPC US$ 1,300.00
FMT100-DCM 100KM Passive Dispersion Compensation Module, Plug-in Type, LC/UPC US$ 1,400.00
FMT140-DCM 140KM Passive Dispersion Compensation Module, Plug-in Type, LC/UPC US$ 1,818.00


The optical amplifier has the ability to directly boost the weak signal, while the dispersion compensation module can reshape the deformed signal and offer a long compensation distance. Considering that the signal strength would become weak as the transmission distance increases, using the optical amplifier and dispersion compensation module to enhance the signals is very necessary when building a long DWDM system.

Optical Amplifier Overview

When it comes to optical fiber communication, we are impressed with its fast speed, large information capacity and bandwidth. To achieve this result, numbers of optical components play key roles in optical systems. Optical amplifier is one of them. When transmitted over long distance, the optical signal will be highly attenuated. On this situation, optical amplifier makes a difference. Today, this article will give a brief overview about optical amplifier to help you learn more about it.

What Is an Optical Amplifier?

Usually a basic optical communication link consists of a transmitter and receiver, with an optical fiber cable connecting them. Even if signals in fibers suffer less attenuation than in other mediums, there is still a limited distance about 100 km. Beyond this distance, the signal will become too noisy to be detected.

Optical amplifier is a device designed to directly amplify an input optical signal, without needing to transform it first to an electronic signal. And at the same time, it can strengthen the signal, which is conducive to transmission over long distances. Here is a comparison figure. In the (a), it is an electrical signal regeneration station. We can see all the channels are separated, signals detected, amplified and cleaned electrically, then transmitted and combined again. However, in the figure (b), it is an optical amplifier in which all channels are optically and transparently amplified together. Compared to electrical amplifier, optical amplifier is more cost-effective. Because it amplifies signals directly, and needs less cost.


Common Types

Generally, there are three common types optical amplifier: the erbium doped fiber amplifier (EDFA), the semiconductor optical amplifier, and the fiber Raman amplifier.

Erbium Doped Fiber Amplifier (EDFA)

The amplifying medium of EDFA is a glass optical fiber doped with erbium ions. The wavelength near 1550 nm can be amplified effectively in erbium doped optical fiber amplifiers. What’s more, EDFA has low noise and can amplify many wavelengths simultaneously, making EDFA widely used in optical communications. According to the functions, EDFA usually has three types: booster amplifier, in-line amplifier and pre-amplifier.

A booster amplifier operates at the transmission side of the link, designed to amplify the signal channels exiting the transmitter to the level required for launching into the fiber link. It’s not always required in single channel links, but is an essential part in WDM link where the multiplexer attenuates the signal channels. It has high input power, high output power and medium optical gain. The common types are 20dBm Output C-band 40 Channels 26dB Gain Booster EDFA, 16dBm Output C-band 40 Channels 14dB Gain Booster EDFA and so on. Of course, there are still different specification of booster amplifiers which cannot be listed here. Here is a picture of 23dB Output 1550nm Booster EDFA Optical Amplifier.

booster amplifier

An in-line amplifier typically operates in the middle of an optical link, which is designed for optical amplification between two network nodes on the main optical link. It features medium to low input power, high output power, high optical gain, and a low noise figure.

At the end a pre-amplifer makes a difference. Pre-amplifier is used to compensate for losses in a demultiplexer near the optical receiver. It has relatively low input power, medium output power and medium gain.


Semiconductor Optical Amplifier

Semiconductor optical amplifier (SOA) uses a semiconductor to provide the gain medium. It operates with less power and is cheaper. But its performance is not as good as EDFA. SOA is noisier than EDFA. Therefore, SOA is usually applied in local area networks where performance is not required but the cost is an important factor.

Raman Amplifier

In a fiber Raman amplifier, power is transferred to the optical signal by a nonlinear optical process known as the Raman effect. Distributed and lumped amplifiers are the two common types of Raman amplifier. The transmission fiber in distributed Raman amplifier is utilized as the gain medium by multiplexing a pump wavelength with the signal wavelength, while a lumped Raman amplifier utilizes a dedicated, shorter length of fiber to provide amplification. Here is a Raman amplifier.



Optical amplifiers perform a critical function in modern optical networks, enabling the information transmitted over thousands of kilometers and providing the data capacity which current and future communication networks are required. Amplifiers mentioned above are available in Fiberstore. If you are interested, please visit FS.COM for more information.

Guide to Optical Amplifier

In pursuit of high transmission capacity, people have been tried many ways. For example, they pave more cables or use the TDM (time domain multiplexer) to improve the transmission capacity. But in these traditional ways, signals could become weaker in power through the fiber link. And the further they are transmitted, the weaker the signals will be until they can not be detected. With the advanced of technology, optical amplifier which is a better solution to improve the transmission capacity came around. It can strengthen the attenuated signals and even can bring them back to the original level. And now it is mainly applied in DWDM technology so that DWDM technology can support long-haul transmission.

Working Principles of Optical Amplifier

Optical amplifier is a device that can amplifier optical signals directly, which does not need to convert optical signals to electric signals first. And we will take the common kind for example to explain its working principles, namely, EDFA (erbium doped fiber amplifier). Optical fiber is often doped with rare-earth elements, such as erbium or praseodymium which can be pumped into a excited state by pump laser. When input signals pass by the fiber, they will stimulate the excited atoms of erbium so that the atoms of erbium can release their energy in the form of emitted light photons. It is the emitted light photons who has the same phase and wavelength with input signals that amplify the optical signals.

Working Principles of EDFA

Working Principles of EDFA

Types of Optical Amplifier

Optical amplifier can be divided into three types now. They are the doped fiber amplifier, the semiconductor optical amplifier and the Raman amplifier. Next we will introduce each of amplifiers.

Doped fiber amplifier has several types according to the kinds of rare earth elements. Erbium-doped fiber amplifier is the most common one. Just like we said before, its amplifying medium is the fiber doped with erbium elements. The amplified light’s wavelength is around 1550 nm, which suffers minimum attenuation. And this amplifier has low noise and is applied in the long-haul telecommunication networks. The second is semiconductor optical amplifier whose gain medium is undoped InGaAsP. Compared with EDFA, it is less expensive and more suitable for local networks. Raman amplifier’s gain medium is undoped optical fiber. It is made with Raman scattering effect which is an important non-linear effect. By the early part of 2000s, it is used for long-haul (typically between 300 and 800 km) or ultra-long-haul (typically longer than 800 km) fiber-optics transmission system. And this amplifier has been commercialized these days, with sold at a high price.

The advent of optical amplifier is a great success in optical fiber communication technology. At present, it has been become a basic device in modern telecommunication networks and brings much effectiveness to economy and society, which presents a good trend for the market prospect.

Optical Amplifier Is a Key Technology for Restoring Signals

Optical communications are more and more prevailing for the high demand for telecommunication, video and data transmission. The optical fiber is capable of transmitting many signals over long distance to meet people’s various requirements. But the signals are easily attenuated in the long-distance high speed networks. Amplifiers are a key enabling technology for strengthening optical signals. Electrical amplifiers are originally used but gradually replaced by optical amplifiers.

Optical amplifier is a device that can amplifier optical signals directly without the need to convert them into electrical ones. Electrical amplifier is originally used but gradually replaced by optical amplifier. It is a much cheaper solution in comparison with electrical amplifier which has costly conversions from optical to electrical signal. The longer the transmission distance is, the more electrical signals need to be converted, which makes the cost of electrical amplification higher and higher. So optical amplifier is used in an increasing number. More detailed information about it is as followed.

Optical amplifiers can be used as power boosters, in-line amplifiers and detector pre-amplifiers in fiber optical data links. Booster amplifiers are used to increase the optical output of optical transmitters when signals haven’t entered the optical fibers. Once transmitted, the optical signals are attenuated by 0.2dB/km. In-line amplifiers are then used to restore the optical signals to its original power level. At the end of the data link are pre-amplifiers which are used to increase the sensitivity of an optical receiver.

optical ampplifier functions

optical amplifier: functions

There are three most important types of optical amplifiers including erbium-doped fiber amplifier(EDFA), semiconductor optical amplifier (SOA) and Raman amplifier. Here will introduce them briefly.

Erbium-Doped fiber amplifier: it is an optical or IR repeater that amplifies a modulated laser beam directly without optical to electrical conversion. It uses a short length of optical fiber doped with the rare-earth element erbium. The signals-carrying laser beams are usually at IR wavelengths with application of external energy. It has low noise and capable of amplifying many wavelengths simultaneously, which is an excellent choice in optical communications.

Semiconductor optical amplifier: it is an optical amplifier which uses a semiconductor to provide the gain medium. The gain medium is undoped InGaAsP. This material can be tailored to provide optical amplification at wavelengths near 1.3 µm or near 1.5 µm which are important wavelengths for optical communications. It makes fewer noises than EDFA and generates less handle power. But it is more suitable to be used in networks where the best performance is not required for it is less expensive.

Raman amplifier: it is an optical amplifier based on Raman gain created by Raman scattering, which works entirely differently from EDFA or SOA. Raman optical amplifier have two key elements: the pump laser and the directional coupler. The pump laser has a wavelength of 90 nm to 1500 nm. The circulator provides a convenient means of injecting light backwards in to the transmission path with minimal optical loss. Raman amplification occurs throughout the length of transmission fiber, which makes Raman amplifier known as distributed amplifier.

For more information about optical amplifier, please visit www.fs.com.