Author Archives: Admin

The Most Common Data Center Design Missteps

Introduction

Data center design is to provide IT equipment with a high-quality, standard, safe, and reliable operating environment, fully meeting the environmental requirements for stable and reliable operation of IT devices and prolonging the service life of computer systems. Data center design is the most important part of data center construction directly relating to the success or failure of data center long term planning, so its design should be professional, advanced, integral, flexible, safe, reliable, and practical.

9 Missteps in Data Center Design

Data center design is one of the effective solutions to overcrowded or outdated data centers, while inappropriate design results in obstacles for growing enterprises. Poor planning can lead to a waste of valuable funds and more issues, increasing operating expenses. Here are 9 mistakes to be aware of when designing a data center.

Miscalculation of Total Cost

Data center operation expense is made up of two key components: maintenance costs and operating costs. Maintenance costs refer to the costs associated with maintaining all critical facility support infrastructure, such as OEM equipment maintenance contracts, data center cleaning fees, etc. Operating costs refer to costs associated with day-to-day operations and field personnel, such as the creation of site-specific operational documentation, capacity management, and QA/QC policies and procedures. If you plan to build or expand a business-critical data center, the best approach is to focus on three basic parameters: capital expenditures, operating and maintenance expenses, and energy costs. Taking any component out of the equation, you might face the case that the model does not properly align an organization’s risk profile and business spending profile.

Unspecified Planning and Infrastructure Assessment

Infrastructure assessment and clear planning are essential processes for data center construction. For example, every construction project needs to have a chain of command that clearly defines areas of responsibility and who is responsible for aspects of data center design. Those who are involved need to evaluate the potential applications of the data center infrastructure and what types of connectivity requirements they need. In general, planning involves a rack-by-rack blueprint, including network connectivity and mobile devices, power requirements, system topology, cooling facilities, virtual local and on-premises networks, third-party applications, and operational systems. For the importance of data center design, you should have a thorough understanding of the functionality before it begins. Otherwise, you’ll fall short and cost more money to maintain.

data center

Inappropriate Design Criteria

Two missteps can send enterprises into an overspending death spiral. First of all, everyone has different design ideas, but not everyone is right. Second, the actual business is mismatched with the desired vision and does not support the setting of kilowatts per square foot or rack. Over planning in design is a waste of capital. Higher-level facilities also result in higher operational and energy costs. A data center designer establishes the proper design criteria and performance characteristics and then builds capital expenditure and operating expenses around it.

Unsuitable Data Center Site

Enterprises often need to find a perfect building location when designing a data center. If you don’t get some site-critical information, it will lead to some cases. Large users are well aware of the data center and have concerns about power availability and cost, fiber optics, and irresistible factors. Baseline users often have business model shells in their core business areas that decide whether they need to build or refurbish. Hence, premature site selection or unreasonable geographic location will fail to meet the design requirements.

Pre-design Space Planning

It is also very important to plan the space capacity inside the data center. The raised floor to support ratio can be as high as 1 to 1, while the mechanical and electrical equipment needs enough space to accommodate. In addition, the planning of office and IT equipment storage areas also needed to be considered. Therefore, it is very critical to estimate and plan the space capacity during data center design. Estimation errors can make the design of a data center unsuitable for the site space, which means suspending project re-evaluation and possibly repurchasing components.

Mismatched Business Goals

Enterprises need to clearly understand their business goals when debugging a data center so that they can complete the data center design. After meeting the business goals, something should be considered, such as which specific applications the data center supports, additional computing power, and later business expansion. Additionally, enterprises need to communicate these goals to data center architects, engineers, and builders to ensure that the overall design meets business needs.

Design Limitations

The importance of modular design is well-publicized in the data center industry. Although the modular approach refers to adding extra infrastructure in an immediate mode to preserve capital, it doesn’t guarantee complete success. Modular and flexible design is the key to long-term stable operation, also meets your data center plans. On the power system, you have to take note of adding UPS (Uninterruptible Power Supply) capacity to existing modules without system disruption. Input and output distribution system design shouldn’t be overlooked, it can allow the data center to adapt to any future changes in the underlying construction standards.

Improper Data Center Power Equipment

To design a data center to maximize equipment uptime and reduce power consumption, you must choose the right power equipment based on the projected capacity. Typically, you might use redundant computing to predict triple server usage to ensure adequate power, which is a waste. Long-term power consumption trends are what you need to consider. Install automatic power-on generators and backup power sources, and choose equipment that can provide enough power to support the data center without waste.

Over-complicated Design

In many cases, redundant targets introduce some complexity. If you add multiple ways to build a modular system, things can quickly get complicated. The over-complexity of data center design means more equipment and components, and these components are the source of failure, which can cause problems such as:

  • Human error. Data statistics errors lead to system data vulnerability and increase operational risks.
  • Expensive. In addition to equipment and components, the maintenance of components failure also incurs more charges.
  • Design concept. If maintainability wasn’t considered by the data center design when the IT team has the requirements of operating or servicing, system operational normality even human security get impacts.

Conclusion

Avoid the nine missteps above to find design solutions for data center IT infrastructure and build a data center that suits your business. Data center design missteps have some impacts on enterprises, such as business expansion, infrastructure maintenance, and security risks. Hence, all infrastructure facilities and data center standards must be rigorously estimated during data center design to ensure long-term stable operation within a reasonable budget.

Article Source: The Most Common Data Center Design Missteps

Related Articles:

How to Utilize Data Center Space More Effectively?

Data Center White Space and Gray Space

Impact of Chip Shortage on Datacenter Industry

As the global chip shortage let rip, many chip manufacturers have to slow or even halt semiconductor production. Makers of all kinds of electronics such as switches, PCs, servers are all scrambling to get enough chips in the pipeline to match the surging demand for their products. Every manufacturer, supplier and solution provider in datacenter industry is feeling the impact of the ongoing chip scarcity. However, relief is nowhere in sight yet.

What’s Happening?

Due to the rise of AI and cloud computing, datacenter chips have been a highly charged topic in recent times. As networking switches and modern servers, indispensable equipment in datacenter applications, use more advanced components than an average consumer’s PC, naturally when it comes to chip manufacturers and suppliers, data centers are given the top priority. However, with the demand for data center machines far outstripping supply, chip shortages may continue to be pervasive across the next few years. Coupled with economic uncertainties caused by the pandemic, it further puts stress on datacenter management.

According to a report from the Dell’Oro Group, robust datacenter switch sales over the past year could foretell a looming shortage. As the mismatch in supply and demand keeps growing, enterprises looking to buy datacenter switches face extended lead times and elevated costs over the course of the next year.

“So supply is decreasing and demand is increasing,” said Sameh Boujelbene, leader of the analyst firm’s campus and data-center research team. “There’s a belief that things will get worse in the second half of the year, but no consensus on when it’ll start getting better.”

Back in March, Broadcom said that more than 90% of its total chip output for 2021 had already been ordered by customers, who are pressuring it for chips to meet booming demand for servers used in cloud data centers and consumer electronics such as 5G phones.

“We intend to meet such demand, and in doing so, we will maintain our disciplined process of carefully reviewing our backlog, identifying real end-user demand, and delivering products accordingly,” CEO Hock Tan said on a conference call with investors and analysts.

Major Implications

Extended Lead Times

Arista Networks, one of the largest data center networking switch vendors and a supplier of switches to cloud providers, foretells that switch-silicon lead times will be extended to as long as 52 weeks.

“The supply chain has never been so constrained in Arista history,” the company’s CEO, Jayshree Ullal, said on an earnings call. “To put this in perspective, we now have to plan for many components with 52-week lead time. COVID has resulted in substrate and wafer shortages and reduced assembly capacity. Our contract manufacturers have experienced significant volatility due to country specific COVID orders. Naturally, we’re working more closely with our strategic suppliers to improve planning and delivery.”

Hock Tan, CEO of Broadcom, also acknowledged on an earnings call that the company had “started extending lead times.” He said, “part of the problem was that customers were now ordering more chips and demanding them faster than usual, hoping to buffer against the supply chain issues.”

Elevated Cost

Vertiv, one of the biggest sellers of datacenter power and cooling equipment, mentioned it had to delay previously planned “footprint optimization programs” due to strained supply. The company’s CEO, Robert Johnson, said on an earnings call, “We have decided to delay some of those programs.”

Supply chain constraints combined with inflation would cause “some incremental unexpected costs over the short term,” he said, “To share the cost with our customers where possible may be part of the solution.”

“Prices are definitely going to be higher for a lot of devices that require a semiconductor,” says David Yoffie, a Harvard Business School professor who spent almost three decades serving on the board of Intel.

Conclusion

There is no telling that how the situation will continue playing out and, most importantly, when supply and demand might get back to normal. Opinions vary on when the shortage will end. The CEO of chipmaker STMicro estimated that the shortage will end by early 2023. Intel CEO Patrick Gelsinger said it could last two more years.

As a high-tech network solutions and services provider, FS has been actively working with our customers to help them plan for, adapt to, and overcome the supply chain challenges, hoping that we can both ride out this chip shortage crisis. At least, we cannot lose hope, as advised by Bill Wyckoff, vice president at technology equipment provider SHI International, “This is not an ‘all is lost’ situation. There are ways and means to keep your equipment procurement and refresh plans on track if you work with the right partners.”

Article Source: Impact of Chip Shortage on Datacenter Industry

Related Articles:

The Chip Shortage: Current Challenges, Predictions, and Potential Solutions

Infographic – What Is a Data Center?

Infographic – What Is a Data Center?

The Internet is where we store and receive a huge amount of information. Where is all the information stored? The answer is data centers. At its simplest, a data center is a dedicated place that organizations use to house their critical applications and data. Here is a short look into the basics of data centers. You will get to know the data center layout, the data pathway, and common types of data centers.

what is a data center

To know more about data centers, click here.

Article Source: Infographic – What Is a Data Center?

Related Articles:

What Is a Data Center?

Infographic — Evolution of Data Centers

Why Data Center Location Matters?

When it comes to data center design, location is a crucial aspect that no business can overlook. Where your data center is located matters a lot more than you might realize. In this article, we will walk you through the importance of data center location and factors you should keep in mind when choosing one.

The Importance of Data Center Location

Though data centers can be located anywhere with power and connectivity, the site selection can have a great impact on a wide range of aspects such as business uptime and cost control. Overall, a good data center location can better secure your data center and extend the life of data centers. Specifically, it means lower TCO, faster internet speed, higher productivity, and so on. Here we will discuss two typical aspects that are the major concerns of businesses.

Greater physical security

Data centers have extremely high security requirements, and once problems occur, normal operation will be affected. Of course, security and reliability can be improved by various means, such as building redundant systems, etc. However, reasonable planning of the physical location of a data center can also effectively avoid harm caused by natural disasters such as earthquakes, floods, fires and so on. If a data center is located in a risk zone that is prone to natural disasters, that would lead to longer downtime and more potential damages to infrastructure.

Higher speed and better performance

Where your data center is located can also affect your website’s speed and business performance. When a user visits a page on your website, their computer has to communicate with servers in your data center to access data or information they need. That data is then transferred from servers to their computer. If your data center is located far away from your users who initiate certain requests, information and data will have to travel longer distances. That will be a lengthy process for your users who could probably get frustrated with slow speeds and latency. The result is lost users leaving your site with no plans to come back. In a sense, a good location can make high speed and impressive business performance possible.

Choosing a Data Center Location — Key Factors

Choosing where to locate your data center requires balancing many different priorities. Here are some major considerations to help you get started.

key factors of choosing a data center location

Business Needs

First and foremost, the decision has to be made based on your business needs and market demands. Where are your users? Is the market promising in the location you are considering? You should always build your data center as close as possible to users you serve. It can shorten the time for users to obtain files and data and make for happy customers. For smaller companies that only operate in a specific region or country, it’s best to choose a nearby data center location. For companies that have much more complicated businesses, they may want to consider more locations or resort to third-party providers for more informed decisions.

Natural Disasters

Damages and losses caused by natural disasters are not something any data center can afford. These include big weather and geographical events such as hurricanes, tornadoes, floods, lightning and thunder, volcanoes, earthquakes, tsunamis, blizzards, hail, fires, and landslides. If your data center is in a risk zone, it is almost a matter of time before it falls victim to one. Conversely, a good location less susceptible to various disasters means a higher possibility of less downtime and better operation.

It is also necessary to analyze the climatic conditions of a data center location in order to select the most suitable cooling measures, thus reducing the TCO of running a data center. At the same time, you might want to set up a disaster recovery site that is far enough from the main site, so that it is almost impossible for any natural disaster to affect them at the same time.

Power Supply

The nature of data centers and requirements for quality and capacity determine that the power supply in a data center must be sufficient and stable. As power is the biggest cost of operating a data center, it is very important to choose a place where electricity is relatively cheap.

The factors we need to consider include:

Availability — You have to know the local power supply situation. At the same time, you need to check whether there are multiple mature power grids in alternative locations.

Cost — As we’ve mentioned, power costs a lot. So it is necessary to compare various power costs. That is to say, the amount of power should be viable and the cost of it should be low enough.

Alternative energy sources — You might also want to consider whether there are renewable energy sources such as solar energy, wind energy and air in alternative locations, which will help enterprises to build a greener corporate image.

It is necessary to make clear the local power supply reliability, electricity price, and policies concerning the trend of the power supply and market demand in the next few years.

Other Factors

There are a number of additional factors to consider. These include local data protection laws, tax structures, land policy, availability of suitable networking solutions, local infrastructure, the accessibility of a skilled labor pool, and other aspects. All these things combined can have a great impact on the TCO of your data center and your business performance. This means you will have to do enough research before making an informed decision.

There is no one right answer for the best place to build a data center. A lot of factors come into play, and you may have to weigh different priorities. But one thing is for sure: A good data center location is crucial to data center success.

Article Source: Why Data Center Location Matters?

Related Articles:

Data Center White Space and Gray Space

Five Ways to Ensure Data Center Physical Security

The Infrastructure Bill is all set to transform the Fiber Optic & Data Center Industry

In August 2021, the US Senate passed the Infrastructure Bill to revamp the dated setup responsible for latency issues and low connectivity in underserved rural communities. The bill’s passing has led to great excitement amongst various sectors, chief amongst them being the telecom industry. Here’s an overview of how the Infrastructure Bill will affect the fiber optics and Data Center sectors.

What is the Infrastructure Bill and what does it entail?

The recently approved Infrastructure Bill is set to make considerable headway in bridging the great digital divide: a decade-long problem afflicting some 40 million Americans. The Senate-passed bill of $1.2 trillion hopes to improve the aging American Infrastructure and boost various sectors via increased funding and jobs. $65 billion from this grant is exclusively allocated for enhanced internet experiences in underprivileged regions.

Low bandwidth internet has been creating a great digital divide in various American states for a long time. Communities on the underprivileged side of this divide have suffered from maladjustment in the new virtual norm. Poor connectivity for these communities has meant inefficiency in carrying out routine tasks, failure in maintaining uninterrupted workflows, and severed communications. Digital solutions that have become part and parcel of many Americans, such as e-learning, telehealth, etc., are still somewhat of an anomaly for these regions.

America needs a rejuvenated infrastructure that enables these communities with a secure, high-quality, and super-fast connection.

The bill’s passage is said to remove these barriers in the underserved regions. However, this will also call for a joint deliverance from all parties involved, including government bodies, the telecommunications industry, and the fiber optics/ data center sectors. These are major sectors poised to help America close the great digital divide and successfully make the virtual shift.

How will this bill affect the fiber optics and data center sector?

One of the major components of this project is the expansion of the internet infrastructure. This, along with effectively and efficiently building out in remote regions while eliminating inconsistent right-of-way rules, will result in adequate and speedy connections. There are many other complexities involved, but what the underprivileged communities, such as the Midwest, need most are 5G wireless services and robust fiber deployment.

Telecommunications and Data Center industries have always found infrastructure expansion difficult in places such as the Midwest due to natural physical barriers. These include the largely uneven landscape of mountains, roughly-cleared forests, and expanses of water. All of these have led to poor internet connections in these regions. Introducing the 5G wireless service can be a great way to overcome the handicaps of nature. But setting up these services would require vigorous fiber optic cable deployments and construction of powerful data centers.

The fiber optics sector is the chief component against which the entire digital network is buttressed. This is the network of speedy internet and empowered consumers who are facilitated 24/7 with high-quality, uninterrupted connections and modern digital services.

Modern digital services rely heavily on network densification and evolving technologies such as the blockchain, AI, and the IoT. Fiber optics is responsible for supporting most of these modernized services. Network densification is an efficient way to increase network capacity without requiring more rack space, but this also means constructing a large number of data centers in these areas.

To make the 5G technology work, the fiber optics industry will have to build data centers and cell towers in close proximity to eliminate latency problems through agile deployment. This 5G wireless fiber-based network of data centers will provide these remote regions with the resiliency and scaling needed to maintain critical speeds and higher bandwidths.

This kind of networking will also require all stakeholders, network enterprises, and local government bodies to work together and ensure that all populations can derive massive benefits from the revamped Infrastructure.

The federal government has already taken various initiatives to maximize funding for quicker broadband infrastructure deployment and more can be added to the allocated amount in the coming years. The National Digital Inclusion Alliance reported on the number of measures taken by the government to improve the digital literacy efforts and bring together pockets of communities via a compact digital resource network. As these state and federal-backed initiatives help overcome problems of connectivity caused by physical barriers, underserved populations will finally access reliable connectivity.

Some potential pitfalls to watch out for with the Infrastructure Bill

While there is a great buzz surrounding the opportunities and innovations stemming from the bill’s passing, there are some potential pitfalls that both governments and industry enterprises must look out for.

The prospect of billions in federal grants means that multiple telecommunication and fiber optics enterprises will be vying for the funds. If too many telecoms in one region get access to the federal grant, the result could be an overbuilding of the digital infrastructure. This may put an excessive burden on the electrical energy sector and cause other environmental hazards.

It is also feared that the grant will keep new tech companies at bay by providing already established tech enterprises access to rural areas. The result could be a stifling of innovations in broadband internet technology.

The future of fiber optics and datacenter sector post-Infrastructure Bill

The 5G fiber technology offers the fastest internet connectivity helping businesses set greater targets and achieve better results. With the release of grants from the federal government, the industry will undoubtedly expand to accommodate the growing need for innovative solutions.

According to one study, the fiber industry will grow at 8.5% in the coming years. By 2025, the fiber optics sector is estimated to become a seven billion-dollar industry.

Numerous cities plan for a fiber-based internet network to create what Wired news calls the “internet utopia”. An ambitious network provider has already planned for an 8000-mile long submarine underwater fiber optic cable connecting Los Angeles and Hong Kong to support the increasing demand for Google and Facebook.

There is a great buzz surrounding the expansion of the 5G wireless network and what it means for the great virtual shift in the country. It will not be long before we begin seeing the role of fiber optics and data centers in newer, modern, and diversified digital applications and devices accessible by all.

Article Source: The Infrastructure Bill is all set to transform the Fiber Optic & Data Center Industry

Related Articles:

5 Types of Optical Fibers for 5G Networks

What Is Data Center Security?

What Is a Containerized Data Center: Pros and Cons

The rise of the digital economy has promoted the rapid and vigorous development of industries like cloud computing, Internet of Things, and big data, which have put forward higher requirements for data centers. The drawbacks of traditional data centers have emerged gradually, which are increasingly unable to meet the needs of the market. The prefabricated containerized data center meets the current market demand and will usher in a period of rapid development.

What Is a Containerized Data Center?

A containerized data center comes equipped with data center infrastructures housed in a container. There are different types of containerized data centers, ranging from simple IT containers to comprehensive all-in-one systems integrating the entire physical IT infrastructure.

Generally, a containerized data center includes networking equipment, servers, cooling system, UPS, cable pathways, storage devices, lighting and physical security systems.

A Containerized Data Center
A Containerized Data Center

Pros of Containerized Data Centers

Portability & Durability

Containerized data centers are fabricated in a manufacturing facility and shipped to the end-user in containers. Due to the container appearance, they are flexible to move and cost-saving compared to traditional data centers. What’s more, containers are dustproof, waterproof, and shock-resistant, making containerized data centers suitable for various harsh environments.

Rapid Deployment

Unlike traditional data centers with limited flexibility and difficult management, containerized data centers are prefabricated and pretested at the factory, and are transported to the deployment site for direct set-up. With access to utility power, network and water, the data center can work well. Therefore, the on-site deployment period for containerized data centers is substantially shortened to 2~3 months, demonstrating rapid and flexible deployment.

Energy Efficiency

Containerized data centers are designed for energy efficiency, which effectively limits ongoing operational costs. They enable power and cooling systems to match capacity and workload well, improving work efficiency and reducing over-configuration. More specifically, containerized data centers adopt in-row cooling systems to deliver air to adjacent hotspots with strict airflow management, which greatly improves cold air utilization, saves space and electricity costs in the server room, and reduces power usage efficiency (PUE).

High Scalability

Because of its unique modular design, a containerized data center is easy to install and scale up. More data centers can be added to the modular architecture of containerized data centers according to the requirements to optimize the IT configuration in a data center. With high scalability, containerized data centers can meet the changing demands of the organization rapidly and effortlessly.

Cons of Containerized Data Centers

Limited Computing Performance: Although it contains the entire IT infrastructure, a containerized data center still lacks the same computing capability as a traditional data center.

Low Security: Isolated containerized data centers are more vulnerable to break-ins than data center buildings. And without numerous built-in redundancies, an entire containerized data center can be shut down by a single point of failure.

Lack of Availability: It is challenging and expensive to provide utilities and networks for containerized data centers placed in edge areas.

Conclusion

Despite some shortcomings, containerized data centers have obvious advantages over traditional data centers. From the perspective of both current short-term investment and future long-term operating costs, containerized data centers have become the future trend of data center construction at this stage.

Article Source: What Is a Containerized Data Center: Pros and Cons

Related Articles:

What Is a Data Center?

Micro Data Center and Edge Computing

Top 7 Data Center Management Challenges

Carrier Neutral vs. Carrier Specific: Which to Choose?

As the need for data storage drives the growth of data centers, colocation facilities are increasingly important to enterprises. A colocation data center brings many advantages to an enterprise data center, such as carriers helping enterprises manage their IT infrastructure that reduces the cost for management. There are two types of hosting carriers: carrier-neutral and carrier-specific. In this article, we will discuss the differentiation of them.

Carrier Neutral and Carrier Specific Data Center: What Are They?

Accompanied by the accelerated growth of the Internet, the exponential growth of data has led to a surge in the number of data centers to meet the needs of companies of all sizes and market segments. Two types of carriers that offer managed services have emerged on the market. Carrier-neutral data centers allow access and interconnection of multiple different carriers while the carriers can find solutions that meet the specific needs of an enterprise’s business. Carrier-specific data centers, however, are monolithic, supporting only one carrier that controls all access to corporate data. At present, most enterprises choose carrier-neutral data centers to support their business development and avoid some unplanned accidents. There is an example, in 2021, about 1/3 of the cloud infrastructure in AWS was overwhelmed and down for 9 hours. This not only affected millions of websites, but also countless other devices running on AWS. A week later, AWS was down again for about an hour, bringing down the Playstation network, Zoom, and Salesforce, among others. The third downtime of AWS also impacted Internet giants such as Slack, Asana, Hulu, and Imgur to a certain extent. 3 outages of cloud infrastructure in one month took a beyond measure cost to AWS, which also proved the fragility of cloud dependence. In the above example, we can know that the management of the data center by the enterprise will affect the business development due to some unplanned accidents, which is a huge loss for the enterprise. To lower the risks caused by using a single carrier, enterprises need to choose a carrier-neutral data center and adjust the system architecture to protect their data center.

Why Should Enterprises Choose Carrier Neutral Data Center?

Carrier-neutral data centers are data centers operated by third-party colocation providers, but these third parties are rarely involved in providing Internet access services. Hence, the existence of carrier-neutral data centers enhances the diversity of market competition and provides enterprises with more beneficial options. Another colocation advantage of a carrier-neutral data center is the ability to change internet providers as needed, saving the labor cost of physically moving servers elsewhere. We have summarized several main advantages of a carrier-neutral data center as follows.
Why Should Enterprises Choose Carrier Neutral Data Center
Redundancy A carrier-neutral colocation data center is independent of the network operators and not owned by a single ISP. Out of this advantage, it offers enterprises multiple connectivity options, creating a fully redundant infrastructure. If one of the carriers loses power, the carrier-neutral data center can instantly switch servers to another online carrier. This ensures that the entire infrastructure is running and always online. On the network connection, a cross-connect is used to connect the ISP or telecom company directly to the customer’s sub-server to obtain bandwidth from the source. This can effectively avoid network switching to increase additional delay and ensure network performance. Options and Flexibility Flexibility is a key factor and advantage for carrier-neutral data center providers. For one thing, the carrier neutral model can increase or decrease the network transmission capacity through the operation of network transmission. And as the business continues to grow, enterprises need colocation data center providers that can provide scalability and flexibility. For another thing, carrier-neutral facilities can provide additional benefits to their customers, such as offering enterprise DR options, interconnect, and MSP services. Whether your business is large or small, a carrier-neutral data center provider may be the best choice for you. Cost-effectiveness First, colocation data center solutions can provide a high level of control and scalability, expanding opportunity to storage, which can support business growth and save some expenses. Additionally, it also lowers physical transport costs for enterprises. Second, with all operators in the market competing for the best price and maximum connectivity, a net neutral data center has a cost advantage over a single network facility. What’s more, since freedom of use to any carrier in a carrier-neutral data center, enterprises can choose the best cost-benefit ratio for their needs. Reliability Carrier-neutral data centers also boast reliability. One of the most important aspects of a data center is the ability to have 100% uptime. Carrier-neutral data center providers can provide users with ISP redundancy that a carrier-specific data center cannot. Having multiple ISPs at the same time gives better security for all clients. Even if one carrier fails, another carrier may keep the system running. At the same time, the data center service provider provides 24/7 security including all the details and uses advanced technology to ensure the security of login access at all access points to ensure that customer data is safe. Also, the multi-layered protection of the physical security cabinet ensures the safety of data transmission.

Summary

While many enterprises need to determine the best option for their company’s specific business needs, by comparing both carrier-neutral and carrier-specific, choosing a network carrier neutral data center service provider is a better option for today’s cloud-based business customers. Several advantages, such as maximizing total cost, lower network latency, and better network coverage, are of working with a carrier-neutral managed service provider. With no downtime and constant concerns about equipment performance, IT decision-makers for enterprise clients have more time to focus on the more valuable areas that drive continued business growth and success. Article Source: Carrier Neutral vs. Carrier Specific: Which to Choose? Related Articles: What Is Data Center Storage? On-Premises vs. Cloud Data Center, Which Is Right for Your Business?

Data Center Infrastructure Basics and Management Solutions

Data center infrastructure refers to all the physical components in a data center environment. These physical components play a vital role in the day-to-day operations of a data center. Hence, data center management challenges are an urgent issue that IT departments need to pay attention to. On the one hand, it is to improve the energy efficiency of the data center; on the other hand, it is to know about the operating performance of the data center in real-time ensuring its good working condition and maintaining enterprise development.

Data Center Infrastructure Basics

The standard for data center infrastructure is divided into four tiers, each of which consists of different facilities. They mainly include cabling systems, power facilities, cooling facilities, network infrastructure, storage infrastructure, and computing resources. There are roughly two types of infrastructure inside a data center: the core components and IT infrastructure. Network infrastructure, storage infrastructure, and computing resources belong to the former, while cooling equipment, power, redundancy, etc. belong to the latter.

Core Components

Network, storage, and computing systems are vital infrastructures for data centers to achieve sharing access to applications and data, providing data centers with shared access to applications and data. Also, they are the core components of data centers. Network Infrastructure Datacenter network infrastructure is a combination of network resources, consisting of switches, routers, load balancing, analytics, etc., to facilitate the storage and processing of applications and data. Modern data center networking architectures, through using full-stack networking and security virtualization platforms that support a rich set of data services, can achieve connecting everything from VMs, containers, and bare-metal applications, while enabling centralized management and fine-grained security controls. Storage Infrastructure Datacenter storage is a general term for the tools, technologies and processes for designing, implementing, managing and monitoring storage infrastructure and resources in data centers, mainly referring to the equipment and software technologies that implement data and application storage in data center facilities. These include hard drives, tape drives and other forms of internal and external storage and backup management software utilities external storage facilities/solutions. Computing Resources A data center meter is a memory and processing power to run applications, usually provided by high-end servers. In the edge computing model, the processing and memory used to run applications on servers may be virtualized, physical, distributed among containers or distributed among remote nodes.

IT Infrastructure

As data centers become critical to enterprise IT operations, it is equally important to keep them running efficiently. When designing data center infrastructure, it is necessary to evaluate its physical environment, including cabling system, power system, cooling system to ensure the security of the physical environment of the data center. Cabling Systems The integrated cabling is an important part of data center cable management, supporting the connection, intercommunication and operation of the entire data center network. The system is usually composed of copper cables, optical cables, connectors and wiring equipment. The application of the data center integrated wiring system has the characteristics of high density, high performance, high reliability, fast installation, modularization, future-oriented, and easy application. Power Systems Datacenter digital infrastructure requires electricity to operate. Even an interruption of a fraction of a second will result in a significant impact. Hence, power infrastructure is one of the most critical components of a data center. The data center power chain starts at the substation and ends up through building transformers, switches, uninterruptible power supplies, power distribution units, and remote power panels to racks and servers. Cooling Systems Data center servers generate a lot of heat while running. Based on this characteristic, cooling is critical to data center operations, aiming to keep systems online. The amount of power each rack can keep cool by itself places a limit on the amount of power a data center can consume. Generally, each rack can allow the data center to operate at an average 5-10 kW cooling density, but some may be higher.
data center

Data Center Infrastructure Management Solutions

Due to the complexity of IT equipment in a data center, the availability, reliability, and maintenance of its components require more attention. Efficient data center operations can be achieved through balanced investments in facilities and accommodating equipment. Energy Usage Monitoring Equipment Traditional data centers lack the energy usage monitoring instruments and sensors required to comply with ASHRAE standards and collect measurement data for use in calculating data center PUE. It results in a poor monitoring environment for the power system of the data center. One measure is to install energy monitoring components and systems on power systems to measure data center energy efficiency. Enterprise teams can implement effective strategies by the measure to balance overall energy usage efficiency and effectively monitor the energy usage of all other nodes. Cooling Facilities Optimization Independent computer room air conditioning units used in traditional data centers often have separate controls and set points, resulting in excessive operation due to temperature and humidity adjustments. It’s a good way for helping servers to achieve cooling by creating hot-aisle/cold-aisle layouts to maximize the flow of cold air to the equipment intakes and the hot exhaust air from the equipment racks. The creation of hot or cold aisles can eliminate the mixing of hot and cold air by adding partitions or ceilings. CRAC Efficiency Improvement Packaged DX air conditioners likely compose the most common type of cooling equipment for smaller data centers. These units are often described as CRAC units. There are, however, there are several ways to improve the energy efficiency of the cooling system employing DX units. Indoor CRAC units are available with a few different heat rejection options.
  • – As with rooftop units, adding evaporative spray can improve the efficiency of air-cooled CRAC units.
  • – A pre-cooling water coil can be added to the CRAC unit upstream of the evaporator coil. When ambient conditions allow the condenser water to be cooled to the extent that it provides direct cooling benefits to the air entering the CRAC unit, the condenser water is diverted to the pre-cooling coil. This will reduce or sometimes eliminate the need for compressor-based cooling for the CRAC unit.
DCIM Data center infrastructure management is the combination of IT and operations to manage and optimize the performance of data center infrastructure within an organization. DCIM tools help data center operators monitor, measure, and manage the utilization and energy consumption of data center-related equipment and facility infrastructure components, effectively improving the relationship between data center buildings and their systems. DCIM enables bridging of information across organizational domains such as data center operations, facilities, and IT to maximize data center utilization. Data center operators create flexible and efficient operations by visualizing real-time temperature and humidity status, equipment status, power consumption, and air conditioning workloads in server rooms. Preventive Maintenance In addition to the above management and operation solutions for infrastructure, unplanned maintenance is also an aspect to consider. Unplanned maintenance typically costs 3-9 times more than planned maintenance, primarily due to overtime labor costs, collateral damage, emergency parts, and service calls. IT teams can create a recurring schedule to perform preventive maintenance on the data center. Regularly checking the infrastructure status and repairing and upgrading the required components promptly can keep the internal infrastructure running efficiently, as well as extend the lifespan and overall efficiency of the data center infrastructure. Article Source: Data Center Infrastructure Basics and Management Solutions Related Articles: Data Center Migration Steps and Challenges What Are Data Center Tiers?

Data Center Network Security Threats and Solutions

Background

Data center security includes physical security and virtual security. Data center virtual security is actually data center network security,it refers to the various security precautions that are taken to maintain the operational agility of the infrastructure and data. Data center network security threats have become more and more rampant, and enterprises need to find countermeasures to protect sensitive information and prevent data vulnerabilities. We will discuss the data center cyber attacks and solutions.

What Are the Main Data Center Networking Threats?

Data center network is the most valuable and visible asset of storage organizations, while the data center networks, DNS, database, and email servers have become the number one target for cybercriminals, hacktivists, and state-sponsored attackers. Regardless of attackers’ purpose and what they are seeking financial gain, competitive intelligence, or notoriety, they are using a range of cyber technology weapons to attack data centers. The following are 5 top data center network threats.

DDoS attack

Servers are prime targets of DDoS attack designed to disrupt and disable essential internet services. Service availability is critical to a positive customer experience. DDoS attacks, however, can directly threaten availability, resulting in loss of business revenue, customers, and reputation. From 2011 to 2013, the average size of DDoS attacks soared from 4.7 Gbps to 10 Gbps. What’s worse, there has also been a staggering increase in the average number of packets per second during a typical DDoS attack. This proved that the rapid growth of DDoS attacks is enough to disable most standard network equipment. Attackers can amplify the scale and intensity of DDoS attacks primarily by exploiting Web, DNS, and NTP servers, which requires enterprises to do a good job of network monitoring at all times.

Web Application Attack

Web applications are vulnerable to a range of attacks, such as SQL injection, cross-site scripting, cross-site request forgery, etc. Attackers attempt to break into applications and steal data for profit, resulting in enterprises’ data vulnerabilities. According to the 2015 Trustwave Global Security Report, approximately 98% of applications have or have had vulnerabilities. Attackers are increasingly targeting vulnerable web servers and installing malicious code to turn them into a DDoS attack source. Enterprises need proactive defenses to stop web attacks and “virtual patching” of data vulnerabilities.

DNS Attacks

DNS infrastructure is also vulnerable to DDoS attacks or other threats. It is turned into a target of data center cyber attacks for two reasons. First, attackers can prevent Internet users from accessing the Internet by taking DNS servers offline through a variety of means. If an attacker disables DNS servers of ISP, they can block everything the ISP does to users and Internet services. Second, attackers can also amplify DDoS attacks by exploiting DNS servers. Attackers spoof the IP addresses of their real targets, instruct DNS servers to recursively query many DNS servers or send a flood of responses to victims. This allows the DNS server to directly control the victim’s network of DNS traffic. Even if the DNS server is not the ultimate target for attackers, it still causes data center downtime and outages due to DNS reflection attacks.

SSL Blind Spot Exploitation

Many applications support SSL, however, it is surprising that SSL encryption is also a way that attackers can exploit for network intrusion. Although decrypt SSL traffic is decrypted by firewalls, intrusion prevention and threat prevention products, etc., there are some security implications for data vulnerabilities due to these products’ inability to keep up with the growing demand for SSL encryption. For example, the conversion from 1024-bit to 2048-bit SSL keys requires about 6.3 times the processing power to decrypt. This case shows that security applications are gradually breaking down under the decryption requirements of increasing SSL certificate key lengths. For this reason, attackers can easily exploit this defense blind spot for intrusion.

Authentication Attacks

Applications often use authentication to authenticate users, allowing application owners to restrict access to authorized users. But for convenience, many people perform a single authentication. This makes it easy for attackers to use password cracking tools to brute force. Hackers will crack lists of stolen passwords, and even password hashes, and use them to break into other online accounts. As a result, enterprises centrally manage authentication services and prevent users from repeating failed login attempts.
data center

Data Center Virtual Security Solutions

Network security defenses in the data center are imperative. In view of the data vulnerabilities and network security risks caused by the five major data center network security threats, here are some defense solutions.
  • Prevent vulnerabilities: Deploy IPS to protect and patch frequently vulnerable systems and applications. IPS can also detect exploits targeting DNS infrastructure or attempts to use DNS to evade security protections.
  • Network segmentation: Network segmentation implemented effectively enables preventing lateral movement and achieves least privilege access under a zero-trust security model.
  • Deploying application and API protection: The solution to mitigate the OWASP top 10 risks for web applications is to use web and API security applications. Also, data centers can install firewalls and intrusion detection systems (IDS), to help businesses monitor and traffic inspect before it reaches the internal network.
  • Defense against DDoS: Use on-prem and cloud DDoS protections to mitigate DDoS threats.
  • Prevent credential theft: Deploy anti-phishing protection for users to prevent credential theft attacks.
  • Securing supply chains: Detect and prevent sophisticated supply chain attacks using AI and ML-backed threat prevention, as well as EDR and XDR technologies.
data center

Conclusion

Cyberattacks also have a profound impact on data center network security. Enterprises should prepare defense solutions for data centers to ensure data security. The best practices above can also help enterprises gain relevant information about how their data center networks are operating, allowing the IT team to enhance the virtual security of their data centers while maintaining physical security. Article source: Data Center Network Security Threats and Solutions Related Articles: Five Ways to Ensure Data Center Physical Security What Is Data Center Virtualization?

Why Green Data Center Matters

Background

Green data centers appear in the concept of enterprise construction, due to the continuous growth of new data storage requirements and the steady enhancement of green environmental protection awareness. Newly retained data must be protected, cooled, and transferred efficiently. This means that the huge energy demands of data centers present challenges in terms of cost and sustainability, and enterprises are increasingly concerned about the energy demands of their data centers. It can be seen that sustainable and renewable energy resources have become the development trend of green data centers.

Green Data Center Is a Trend

A green data center is a facility similar to a regular data center that hosts servers to store, manage, and disseminate data. It is designed to minimize environmental impact by providing maximum energy efficiency. Green data centers have the same characteristics as typical data centers, but the internal system settings and technologies can effectively reduce energy consumption and carbon footprints for enterprises.

The internal construction of a green data center requires the support of a series of services, such as cloud services, cable TV services, Internet services, colocation services, and data protection security services. Of course, many enterprises or carriers have equipped their data centers with cloud services. Some enterprises may also need to rely on other carriers to provide Internet and related services.

According to market trends, the global green data center market is worth around $59.32 billion in 2021 and is expected to grow at a CAGR of 23.5% in the future to 2026. It also shows that the transition to renewable energy sources is accelerating because of the growth of green data centers.

As the growing demand for data storage drives the modernization of data centers, it also places higher demands on power and cooling systems. On the one hand, data centers need to convert non-renewable energy into electricity to generate electricity, resulting in rising electricity costs; on the other hand, some enterprises need to complete the construction of cooling facilities and server cleaning through a lot of water, all of which are ample opportunities for the green data center market. For example, Facebook and Amazon continue to expand their businesses, which has also increased the need for data storage of global companies. These enterprises need a lot of data to complete the analysis of potential customers, but these data processing needs will require a lot of energy. Therefore, the realization of green data centers has become an urgent need for enterprises to solve these problems, and this can also bring more other benefits to enterprises.

Green Data Center Benefits

The green data center concept has grown rapidly in the process of enterprise data center development. Many businesses prefer alternative energy solutions for their data centers, which can bring many benefits to the business. The benefits of green data centers are as follows.

Energy Saving

Green data centers are designed not only to conserve energy, but also to reduce the need for expensive infrastructure to handle cooling and power needs. Sustainable or renewable energy is an abundant and reliable source of energy that can significantly reduce power usage efficiency (PUE). The reduction of PUE enables enterprises to use electricity more efficiently. Green data centers can also use colocation services to decrease server usage, lower water consumption, and reduce the cost of corporate cooling systems.

Cost Reduction

Green data centers use renewable energy to reduce power consumption and business costs through the latest technologies. Shutting down servers that are being upgraded or managed can also help reduce energy consumption at the facility and control operating costs.

Environmental Sustainability

Green data centers can reduce the environmental impact of computing hardware, thereby creating data center sustainability. The ever-increasing technological development requires the use of new equipment and technologies in modern data centers, and the power consumption of these new server devices and virtualization technologies reduces energy consumption, which is environmentally sustainable and brings economic benefits to data center operators.

data center

Enterprise Social Image Enhancement

Today, users are increasingly interested in solving environmental problems. Green data center services help businesses resolve these issues quickly without compromising performance. Many customers already see responsible business conduct as a value proposition. Enterprises, by meeting compliance, regulatory requirements and regulations of the corresponding regions through the construction of green data centers, improve the image of their own social status.

Reasonable Use of Resources

In an environmentally friendly way, green data centers can allow enterprises to make better use of various resources such as electricity, physical space, and heat, integrating the internal facilities of the data center. It promotes the efficient operation of the data center while achieving rational utilization of resources.

5 Ways to Create a Green Data Center

After talking about the benefits of a green data center, then how to build a green data center. Here are a series of green data center solutions.

  • Virtualization extension: Enterprises can build a virtualized computer system with the help of virtualization technology, and run multiple applications and operating systems through fewer servers, thereby realizing the construction of green data centers.
  • Renewable energy utilization: Enterprises can opt for solar panels, wind turbines or hydroelectric plants that can generate energy to power backup generators without any harm to the environment.
  • Enter eco mode: Using an Alternating current USPs is one way to switch eco mode. This setup can significantly improve data center efficiency and PUE. Alternatively, enterprises can reuse equipment, which not only saves money, but also eliminates unnecessary emissions from seeping into the atmosphere.
  • Optimized cooling: Data center infrastructure managers can introduce simple and implementable cooling solutions, such as deploying hot aisle/cold aisle configurations. Data centers can further accelerate cooling output by investing in air handlers and coolers, and installing economizers that draw outside air from the natural environment to build green data center cooling systems.
  • DCIM and BMS systems: DCIM software and BMS software can help data centers managers identify and document ways to use more efficient energy, helping data centers become more efficient and achieve sustainability goals.

Conclusion

Data center sustainability means reducing energy/water consumption and carbon emissions to offset increased computing and mobile device usage to keep business running smoothly. The development of green data centers has become an imperative development trend, and it also caters to the green goals of global environmental protection. As a beneficiary, enterprises can not only save operating costs, but also effectively reduce energy consumption. This is also an important reason for the construction of green data centers.

Article Source: Why Green Data Center Matters

Related Articles:

Data Center Infrastructure Basics and Management Solutions

What Is a Data Center?