SFP-10G-SR vs. SFP-10G-SR-S

SFP-10G-SR is a popular 10G SFP+ optical transceiver in terms of quantity used. It is considered as the mainstream form factor of the 2017 market due to its matured technology and reduced price, even although 40G/100G optical modules are on the very top trend for enterprise and data center for the interconnection. But two years ago, Cisco introduced S-class optics such as SFP-10G-SR-S for enterprise and data center applications. For some web searchers, he will be recommended with SFP-10G-SR-S rather than SFP-10G-SR. But they almost share the same characteristics, so SFP-10G-SR vs. SFP-10G-SR-S, why choose one over the other? Hope this post may give some clue.

SFP-10G-SR vs. SFP-10G-SR-S: Similarity

Seemingly and technically, they don’t have much difference. SFP-10G-SR-S shares the same product specification with SFP-10G-SR. SFP-10G-SR is compliant with 10GBASE-SR standard. The Cisco 10GBASE-SR module supports a link length of 26m on standard Fiber Distributed Data Interface (FDDI)-grade multimode fiber, up to 300m link lengths over OM3 and 400m link lengths over OM4 cables.

FS.COM 10G-SFP-SR

Cisco SFP-10G-SR transceiver is hot-swappable input/output device which allows a 10 Gigabit Ethernet port to link with a fiber optic network. Because it is hot-swappable and MSA compliant, the Cisco SFP-10G-SR transceiver can be plugged directly into any Cisco SFP+ based transceiver port, without the need to power down the host network system. This capability makes moves, add-ons and exchanges quick and painless.

SFP-10G-SR vs. SFP-10G-SR-S: Difference

According to Cisco, S-class optics are intended for enterprise and data center 10G and 40G applications This new set of optics does not display several unnecessary features for these applications, bringing about a more attractive price. That explains why SFP-10G-SR-S price is lower than SFP-10G-SR price.

Except the price, there are some other differences. SFP-10G-SR-S optics aren’t TAA certified. However, the non-S-class optics such as SFP-10G-SR are all compliant to TAA. SFP-10G-SR-S optics only have COM (Commercial temperature range: 0~70℃). However, the temperature range of SFP-10G-SR can be EXT (Extended temperature range: -5~85℃), IND (Industrial temperature range: -40~85℃) and Storage temperature range (-40~85℃). In terms of protocols, SFP-10G-SR-S optics use Ethernet only, they cannot use OTN (Optical Transport Network) or WAN-PHY (Wide Area Network Physics). Furthermore, SFP-10G-SR-S optics just have 10G and 40G applications so far which is specified for 10G and 40G enterprise and data center. Thus, if you don’t need any special features like extra tolerance for temperature, S-Class optics can save you a considerable amount of money.

SFP-10G-SR Price Comparison

Since equipment SFP-10G-SR vendors all rely on MSAs when designing their transceivers, every supplier can produce the transceiver modules with the same functions but with different prices. Unless you have a 100% requirement to buy Cisco, there are a lot of 3rd party compatible vendors out there that you can save a lot of money by using. Here is a price list from different vendors for you to choose from.

Vendor Model Brand Price
CDW SFP-10G-SR Cisco $693.99
Router-Switch SFP-10G-SR Cisco $262.00
Monoprice SFP-10G-SR Ironlink $136.75
10Gtek SFP-10G-SR 10Gtek $41.05
FS.COM SFP-10G-SR FS.COM $16.00

Conclusion

Although SFP-10G-SR vs. SFP-10G-SR-S, they share identical specification, there still are some minor difference. In most cases, SFP-10G-SR-S optics are recommended for 10G and 40G applications due to its low cost. both SFP-10G-SR price and SFP-10G-SR-S price is relatively lower according to the above chart, and they also enjoy good quality. If you need any third-party optical modules or fiber optic cables, give FS.COM a shot.

What Does Combo SFP Port Mean For Your Ethernet Switch?

To many noobs who are unfamiliar with the structure and functionality of Ethernet switches may get confused with Combo SFP ports. Combo SFP ports are often labeled obviously. You may have some questions in your mind like what is Combo port and how should I use with it. Since there are many Gigabit Ethernet ports and SFP slots on switches, you may ask whether I used these ports correctly? Don’t worry, this post aims to explain Combo SFP port for your reference.

SFP Transceiver

What Is Combo SFP Port?

A Gigabit Ethernet Combo port is both a copper port, i.e. a RJ-45 interface and a SFP port (also called Mini-GBIC connector). It supports both copper (RJ-45) connections and optional industry-standard SFP (small form factor pluggable) modules. Combo SFP ports share the same switch fabric and port number and allow the user to configure their switch according to their application. But you can’t use both of them at the same time. When either of the ports are enabled, the other port is automatically disabled. It means that you can either have a cable plugged into the copper 10/100/1000 interface, or the cable plugged into the SFP slot. If you have both plugged in Combo ports, only one will work. For example, a switch has 12 x 10/100/1000Base-T ports and 2 Gigabit Ethernet Combo ports, therefore it could be configured to have 14 copper ports or 13 copper ports & 1 SFP port, or 12 copper ports & 2 SFP ports, etc.

A Combo port is a way to provide different types of connectivity without taking up unused switch fabric, giving users the power and flexibility to configure their switch for their unique application requirements.

Introduction to FS.COM 24-Port Switch With 4 Combo SFP Ports

There are many switches with combo SFP ports, such as Linksys LGS318 which is a 18-port Smart Gigabit Switch with two combo shared ports and Netgear ProSafe 24-port Gigabit Switch with 2 Gigabit Combo SFP—JGS524F. Today I’m going to recommend FS.COM 24-port switch with 4 Combo SFP—S3800-24F4S.

24 port switch with 4 combo sfp

S3800-24F4S 24-port Gigabit switch is designed to meet the demand of cost-effective Gigabit access or aggregation for enterprise networks and operators customers. The Combo SFP ports—a single interface with dual front ends (an RJ-45 connector and an SFP module connector) on S3800-24F4S 24-port switch facilitate the use of different connectivity, making it more flexible to configure the switch. It has a console port, 4 × 1GE Combo ports, 20 × 100/1000Base SFP ports and 4 × 10GE SFP+ ports. It offers up to 128Gbps switching capacity to simultaneously process traffic on all ports at line rate without any packet loss.

Conclusion

Generally speaking, Combo SFP ports are labeled by vendors. If you can’t tell, here is a way to help you identify. Identifying a combo port is based on the interface identifier on the switch panel. If two ports have the same ID but connect to different transmission media, the two ports are multiplexed as a combo port. Then you can run the display interface command to display the combo port. If you need any 24-port switch or any other Ethernet switch, welcome to consult FS.COM.

Armoured Cable vs. Unarmoured Cable: What’s The Difference?

With the rapid development of optical communication, more and more fiber optic cables are increasingly used in different environments. What if under harsh conditions? Then it’s crucial to ensure your cables smooth and reliable operation when transmitting data. This is where armoured cable comes into play. An armoured cable, as its name suggests, is protected against mechanical damage, whereas an unarmoured cable not being protected. What is the difference between them? And why should we choose armoured cable over unarmoured cable? You my find answer in this post.

Amoured Cable Overview

Armoured cable has an extra layer of protection to keep it from being cut or abraded. The armor layer of coax cable is a foil wrap that is ribbed like corrugated metal to allow for flexibility, around the inside and outside of that wrap is a flooding compound to keep moisture from penetrating the cable and causing an impairment. The internal structure of 4 core armoured cable consists of many layers to prevent the cable from damage. The outer jacket provides protection against rodent, abrasion and twist, which is usually made of plastic. And the armoring materials are mainly come from kevlar, steel, and aluminum foils, aiming to protect the armored cable from being stretched during installation.

the-structure-of-armored-cable

Difference Between Armoured Cable And Unarmoured Cable

Structure

Many people may think that armoured cable just has metal protection. To be precise, the armoring material doesn’t have to be metal, it can be fiber yarn, glass yarn, polyethylene etc. The only thing that makes armored cable different from unarmored cable is that the former has an additional outer protective layer for optical cable. The 4 core armoured cable tends to be more expensive than unarmored cable, while the armoured cable with steel strip and aluminum is much cheaper than armored fiber cable with Kevlar, which is usually used for special occasions.

Difference-between-Armored-Non-Armored-Cable

Application

Armoured cable is installed in locations exposed to mechanical damage, such as on the outsides of walls, as an alternative to conduit. Armoured cable usually has a small metal ribbon to ensure electrical continuity of the safety ground. (You must run a separate ground wire in flexible conduit too; you can’t depend on the continuity of the conduit.) In HT & LT distribution, 4 core armoured cable is preferred. Inside walls and in other protected locations, less expensive unarmored electrical cable can be installed instead. Unarmoured cable is mainly used for control systems.

Why Should Use Armoured Cable Over Unarmoured Cable?

There are a couple of reasons that armoured cable should be used. The biggest reason is about strength, because armored cable was used more extensively in past decades when cable was simply directly buried under dirt and not used through a conduit. Nowadays most local municipalities require conduits to be trenched in prior to installing network components, thus eliminating the need for unarmored cable in most applications. Secondly, rodents or animals can and will chew through cables so the armor protects the cables from damage by animal or shoveling in direct bury applications. Thirdly, the most uncommon reason it would be used is in an RF environment that has an off air RF signal that is powerful enough to interfere with your network, the armor when grounded can provide another layer of RF protection.

Conclusion

Armoured cable can be regarded as a kind of strengthened cable, which is harder and stronger than standard optical cable. With an unparalleled protection against physical damage without sacrificing flexibility or functionality within fiber networks, 4 core armored cable is a perfect addition to any fiber network in hazardous environments.

An In-depth Understanding Into Multimode Fiber Jumper

A multimode fiber jumper, also called multimode patch cable or multimode patch cord is one type of fiber optic patch cable mostly used for communication over short distances. Typical multimode fiber jumper can transmit data rates of 10 Mbit/s to 10 Gbit/s over 600 meters. Based on the types of multimode fiber, multimode patch cable can be divided into OM1 fiber, OM2 fiber, OM3 patch cable, OM4 fiber and the newly released OM5 fiber. What is exactly multimode fiber jumper and what are the applications of them? You may know multimoder fiber jumper better after reading this post.

What Is Multimode Fiber Jumper?

Multi-mode fiber jumpers are described by their core and cladding diameters. There are two kinds of core sizes: 62.5/125 µm. 50 µm and 62.5 µm refer to the diameters of the fiber core, which is the area that carries light signals. 125 µm means the cladding diameter of the fiber (a strand of human hair is about 100 µm). The fairly larger core of multi-mode fiber jumpers enables multiple light modes to be propagated and limits the maximum length of a transmission link because of modal dispersion.

OM4

Types of Multimode Fiber Jumpers

According to the type of paths that the light rays, or modes, multimode fiber jumpers can be categorized into step-index and graded-index multomode fiber. Step-index fiber is a fiber in which the core is of a uniform refractive index and there is a sharp decrease in the index of refraction at the cladding. The core of a step-index fiber has a uniform index of refraction right up to the cladding interface where the index changes in a step-like fashion. Unlike step index fiber, a graded index core contains many layers of glass, each with a lower index of refraction as you go outward from the axis. The higher refractive index at the center makes the light rays moving down the axis advance more slowly than those near the cladding.

Identified by ISO 11801 standard, multimode fiber jumpers can be classified into OM1 fiber, OM2 fiber, OM3 patch cable, OM4 fiber and newly released OM5 fiber. OM1 was first created in mid-80s. As gigabit and 10 gigabit networks have become widely used, an old fiber design has been upgraded. OM2 fiber was used from the late 70s with lasers for telecom applications. Laser-optimized OM3 patch cable or OM4 fiber today is considered by most to be the best choice for multimode applications. OM3 patch cable and OM4 fiber can provide sufficient bandwidth to support 10 Gigabit Ethernet up to 300 meters. OM5 fiber can transmit 40 Gb/s and 100 Gb/s and reduced fiber counts for higher speeds.

types of multimode fiber jumper

By the materials of fiber optic cable jackets, multimode fiber jumpers can be divided into four different types: PVC, LSZH, plenum, and armored multimode patch cable. PVC is non-flame retardant, while the LSZH is flame retardant and low smoke zero halogen. Plenum is compartment or chamber to which one or more air ducts are connected and forms part of the air distribution system. Armored multimode fiber jumpers use rugged shell with aluminum armor and kevlar inside the jacket, and it is 10 times stronger than regular fiber patch cable.

Applications of Multimode Fiber Jumper

Multi-mode fiber jumpers are used to connect high speed and legacy networks like Gigabit Ethernet, Fast Ethernet and Ethernet. For many years, conventional OM1 and OM2 were widely deployed in premises applications supporting data rates ranging from Ethernet (10 Mbit/s) to gigabit Ethernet (1 Gbit/s). Also, they were ideal for use with LED transmitters. Newer deployments often use laser-optimized OM3 patch cable. OM3 patch cable provides sufficient bandwidth to support 10 Gigabit Ethernet up to 300 meters. And OM4 is suitable for distance up to 550 meters. OM5 wideband multimode patch cable has been released this year to support at least four low-cost wavelengths in the 850-950 nm range and transmit 40 Gb/s and 100 Gb/s and reduced fiber counts for higher speeds.

Conclusion

Through aforementioned description about multimode fiber jumper, hope you can have a clearer understanding toward it. Last but no least, fiber patch cables can sometimes be distinguished by jacket color: for 62.5/125 µm (OM1) and 50/125 µm (OM2), orange jackets are recommended, while Aqua is recommended for laser-optimized OM3 patch cable and OM4 fiber. And lime green for OM5 fiber. If you want either multimode fiber jumper or single mode fiber jumper, welcome to visit www.fs.com for information.

How Can We Benefit From 24-Port Managed PoE Switch?

When you search for PoE switches, there are many options popping out, and you’ll be trapped into a dilemma. How should I make a decision between managed switches and unmanaged switches? But most recommendations are managed switches. It seems like managed switches are superior to unmanaged switches. It’s true. Because its security features. They allow administrators visibility and control. But the benefits of managed switches are more than this. The following text will cover what managed switches can do and where 24 ports PoE managed switches are used for your reference.

Why Should Choose Managed Switch Over Unmanaged Switch?

A managed switch can seriously expand the long-range flexibility of your network and it can adapt to changing priorities. As your organization grows, your business needs will continue to evolve. Having a device that can respond to the dynamic shape of your operation is a good investment. There are several reasons why a managed switch is recommended:

  • Managed switches have all the features of an unmanaged switch and additionally have the ability to configure, manage, and monitor your LAN. So this helps you to monitor and decide who should have access to your network and gives you greater control over data flow through your network.
  • If there is an unused port on your managed switch, you can disable that port or even apply MAC address filtering so as not to allow unauthorised users or devices to access the network by just plugging in. So you can secure your network connections and also protect any unused ports on your switch.
  • A major advantage of managed switches is the failover redundancy they add to your network, helping to achieve less network downtime. Managed switches incorporate Spanning Tree Protocol (STP) to provide path redundancy in the network. This provides redundant paths but prevents loops that are created by multiple active paths between switches.

Where Are 24-Port Managed PoE Switches Used?

What are some of the ways a 24 ports PoE managed switch can enhance your organization’s networking capabilities? We need not look any further than the devices these switches connect. Some of the many things a 24-port PoE switch may be used for are:

overview of PoE managed switch

Note: S1400-24T4F managed PoE switch comes with 24x 10/100/1000Base-T RJ45 Ethernet ports, 1x console port, 2x combo port, and 2x gigabit SFP slots.

IP Cameras

To power an IP megapixel camera network, you’ll need a total power per port of 30W. For a 24-Port gigabit PoE managed switch with a power budget of 360W, you can continue to add IP cameras until you reach your budget. If you have 2 SFP ports, you can also connect to multiple switches, as well.

PoE solution

PoE Wireless Access Points (WAPs)

PoE WiFi access points (WAPs) require roughly 30 watts per port for efficient functioning. When you adopt PoE managed switches, installation of controllers and access points is greatly simplified. You won’t need to provide separate power cables or install plugs near wi-fi locations. You’d simply run your Cat5e or Cat6 Cable from your HotSpot to your switch and leave it alone.

Thin Clients

According to wikipedia, thin client is a lightweight computer built to connect to a server from a remote location. It has a barebones design and rely heavily on servers, which allow customers to get access to virtual desktop applications. Furthermore, it help lower costs by about 97%. Since they can access applications, sensitive data and memory from a data center via a managed PoE switch, they have no hard drive.

Conclusion

Since a managed switch has much more advantages over an unmanaged one. It’s necessary for you to have a managed switch in your network. In many cases, future-proofing with a better PoE switch (with more ports) may actually be a much better investment than smaller switches that have fewer ports. Thus, 24-port managed PoE switch is recommended here.

Introduction To 10GBASE-T SFP+ Transceiver From Different Manufactures

10GBASE-T is an Ethernet specification using a copper twisted pair connection (Cat6a or Cat7) with an effective bandwidth of 10 Gbit/s and a maximum transmission distance of up to 100 meters. Compared with other 10G optical modules, the 10GBASE-T SFP+ copper RJ45 transceiver has stable performance, you can take full advantage of the existing copper cabling. It’s now becoming a hot option for equipment designers and data center professionals in building their network solution. Thus, there are many manufactures providing 10GBASE-T SFP+ transceivers, like HPE 10GBASE-T SFP+ transceiver, Cisco 10GBASE-T SFP and also FS.COM 10GBASE-T SFP+ copper transceiver. This post will introduce the characteristics of 10GBASE-T SFP+ transceiver of different manufactures respectively, and then you can choose what you want according to your budget.

HPE 10GBASE-T SFP+ Transceiver

According to HPE product specification, the HPE 10GBASE-T SFP+ Transceiver can convert a 10 Gb SFP+ port on an Hewlett Packard Enterprise switch to a 10GBase-T connection. It is specifically designed for high speed communication links that require 10 Gigabit Ethernet over Cat 6a/7 cable. This SFP+ transceiver offers 10 Gb/s communication over RJ45 copper cables. Its specification is shown as follows:

Ports 10GbE SFP+ port; Duplex: full only Interface RJ45
Weight 0.04 lb, fully loaded Operating temperature

 

32℉- 158℉(0℃-70℃)
Operating relative humidity 5%-95%, noncondensing Altitude

 

Up to 10,000 ft
Power consumption maximum 2.5W Cable type Cat6a/7 cable
Maximum distance 30 m Fiber type

 

Copper

Cisco 10GBASE-T SFP+ Transceiver

The Cisco 10GBASE-T SFP is hot-swappable input/output device which allows a 10 Gigabit Ethernet port to link with a fiber optic network. Because it is hot-swappable and MSA compliant, the Cisco 10GBASE-T SFP+ copper transceiver can be plugged directly into any Cisco SFP+ based transceiver port, without the need to power down the host network system. This capability makes moves, add-ons and exchanges quick and painless. The specification of 10GBASE-T Cisco copper transceiver is as follows:

Cisco genuine SFP-10G-T-S Form type SFP+
Max data rate 10.3125Gbps Max transmission distance

 

30 m
Interface RJ45 Cable type

 

Cat6a/cat7
DOM support No Operating temperature 32℉- 158℉(0℃-70℃)

FS.COM 10GBASE-T SFP+ Transceiver

The 10GBASE-T copper SFP+ transceiver FS.COM offered can convert a 10GbE SFP+ port on a switch or NIC (network interface card) to a 10GBASE-T RJ45 connection, allowing 10G bandwidth over existing copper infrastructure instead of changing to new fiber network equipment. It supports links up to 30 m over Cat6a/7 cable. Compared with an embedded 10GBASE-T RJ45 port for link distances up to 30 m, this module has been optimized to save more than 0.5 W per port. Its details are shown as follows:

Part number SFP-10G-T Form type SFP+
Data rate 10Gbps, 5Gbps, 2.5Gbps, 1000Mbps Cable distance

 

Up to 100m*
Power consumption 2.5W Interface

 

RJ45
DOM support No Operating temperature 32℉- 158℉(0℃-70℃)
*Note: 30 meters via 10Gbps, 50 meters via 5Gbps and 2.5Gbps, 100 meters via 1000Mbps.

Cisco sfp-10g-t-s compatible 10gbase-t sfp+

Conclusion

According to aforementioned, no matter HPE 10GBASE-T SFP+ transceiver, Cisco 10GBASE-T SFP+ or FS.COM 10GBASE-T SFP+ copper transceiver all share similar characteristics, like maximum power consumption, form type, interface, operating temperature and so on. But there is one thing that must differ, that is price. HPE 10GBASE-T SFP+ transceiver is charged $685.99 on official online store, Cisco Compatible 10 Gigabit RJ45 Copper SFP+ Prolabs transceiver module is about $395 on ebay and 10Gtek charges that for $339.99, while FS.COM 10GBASE-T SFP+ copper transceiver only costs $280, which is much lower.

FS.COM now provides compatible 10GBASE-T copper SFP+ transceivers as a new optional solution for your network architecture. Customized service is available for a specific brand compatible copper SFP+ module to your requirements. The following table gives some copper SFP+ product numbers and descriptions for your reference:

Product ID Description
66612 Generic Compatible 10GBASE-T SFP+ Copper RJ-45 30m Transceiver
66613 Cisco SFP-10G-T-S Compatible 10GBASE-T SFP+ Copper RJ-45 30m Transceiver
66614 Arista Networks SFP-10GE-T Compatible 10GBASE-T SFP+ Copper RJ-45 30m Transceiver
66615 H3C SFP-XG-T Compatible 10GBASE-T SFP+ Copper RJ-45 30m Transceiver
66616 Dell GP-10GSFP-T Compatible 10GBASE-T SFP+ Copper RJ-45 30m Transceiver
66617 Customized Compatibility 10GBASE-T SFP+ Copper RJ-45 30m Transceiver

10GBASE-T SFP+ Copper Transceiver: A New Option For 10GbE Network

10GBASE-T SFP+ transceiver is specifically designed for high speed communication links that require 10 Gigabit Ethernet over copper cable (Cat 6a/7 cable). 10GBASE-T SFP+ copper transceiver is the first SFP+ transceiver that offers 10 Gb/s communication over this type of media. Compared with other 10GbE optical modules, the 10GBASE-T SFP+ copper  transceiver has stable performance, you can take full advantage of the existing copper cabling. The following post will briefly introduce some related information about 10GBASE-T copper SFP+ transceiver.

Basic Introduction to 10GBASE-T SFP+ Copper Transceiver

10GBASE-T SFP+ copper transceiver has high performance, good reliability and is a cost-effective I/O solution for 10G Ethernet and 10G Fibre Channel applications. SFP+ 10GBASE-T copper transceiver is mainly used in Cat 6a or Cat 7 copper cabling system for 10G transmission with a maximum distance up to 100m. In addition, compared with SFP+ DAC, 10GBASE-T copper SFP+ transceiver can save at least 0.5W power consumption, and its port can both support STP (shielded twisted pair) and UTP (unshielded twisted pair). Therefore 10GBASE-T SFP+ transceiver is becoming more and more popular in network switches and servers because of its lower power consumption and pay-as-you-grow flexibility.

10GBASE-T SFP+ Copper Transceiver Vs. SFP+ Optical Transceiver Vs. SFP+ DAC

SFP+ DAC, SFP+ optical transceiver and 10GBASE-T SFP+ copper transceiver are three common components used in 10G connections. The following chart reveals the differences between them.

10GBASE-T SFP+ Copper Transceiver Vs. SFP+ Optical Transceiver Vs. SFP+ DAC

Form the figure, we can see that each option has its advantages, but 10GBASE-T’s compatibility with existing structured cabling devices and existing low-speed devices makes it uniquely suited for widespread deployment. These features, combined with superior cost and achievable features, make the simplest path of 10GBase migrate from Gigabit Ethernet to 10G Ethernet. What’s more, the 10GBASE-T SFP+ transceiver module has been optimized to save at least 0.5W per port compared to an embedded 10GBASE-T RJ45 port for link distances up to 30m. Thus, the power savings and corresponding operating cost reduction can be substantial.

Features & Advantages of 10GBASE-T SFP+ Copper Transceiver

  • Cost effective at up to 30m distance on UTP cables
  • Extension of the life of any switch hardware, without having to change existing infrastructure
  • Architecture Flexibility: Supports Top of Rack, Middle of Row or End of Row architectures
  • Auto-negotiable backward-compatibility with previous-generation BASE-T networks for a seamless migration to 10GbE
  • Field twisted pair cabling with familiar RJ-45 connector
  • Support for multi-gigabit data rates up to 10 Gbps

10g sfp+ copper rj45 port

Conclusion

As 10GBASE-T network equipment becomes increasingly available, data center decision makers will want to take advantage of the cost savings, convenience, and flexibility provided by deploying 10 Gb/s technology over balanced twisted-pair copper cabling. Nowadays SFP+ 10GBASE-T transceiver, owing to the compatible issue with switches, is not offered by many vendors. However, from a network equipment designer’s perspective, 10G SFP+ copper modules will become popular in the near future. FS.COM has released 10GBASE-T SFP+ copper modules that are tested compatible with major brands like Cisco, Juniper, Dell, Brocade, Arista.

Copper Cabling Choices For 10GbE

As switching standards is growing maturer and copper cabling standards catch up, the use of copper cabling for 10GbE is becoming more and more popular. Currently, there are four different copper cabling technologies for 10 Gigabit Ethernet, each with its pros and cons. Although fiber (SFP+ optics) delivers the lowest latency and feature flexibility, many IT departments still prefer to use copper cabling for switch-to-switch or switch-to-server connections.

10GBase-CX4

10GBASE-CX4 was the first 10G copper standard published by 802.3. CX4 modules use 4-lane PCS and copper cabling and have a maximum distance of 15 meters. Despite its larger size of connector, CX4 module was initially designed as a replacement for legacy Infiniband switching hardware and a lower-cost switch interface. 10GBASE-CX4 offers the advantages of low power, low cost, and low latency, but has a bigger form factor and more bulky cables than the newer SFP+ standard and a much shorter reach than fiber or 10GBASE-T.

10G SFP+ Direct Attach Cabling

10G SFP+ DAC is also known as 10GSFP+Cu, 10GBase-CR, or 10GBase-CX1, SFP+, or 10GbE Cu SFP cable. SFP+ Direct Attached Cables feature rugged twinaxial cables that connect directly into a low-profile small form-factor pluggable plus (SFP+) diecast connector housing. SFP+ Direct Attach has a fixed-length cable, typically 3, 5 or 7m in length, and like 10GBASE-CX4, feature low power, low cost and low latency with the added advantages of using less bulky cables and of having the small form factor of SFP+.

10g sfp+ dac

10GBASE-T

According to wikipedia, 10GBASE-T is a standard released in 2006 to provide 10 Gbit/s connections over unshielded or shielded twisted pair cables, over distances up to 100 meters. 10GBASE-T SFP+ copper transceiver module uses standard RJ-45 connectors that are already widely used with Ethernet. 10GBASE-T cable infrastructure can also be used for 1000BASE-T allowing a transition from 1000BASE-T using auto negotiation to select which speed to use. 10GBASE-T is available from several manufacturers like Mikrotik, HPE and FS.COM with power consumption of 3-4 W per port with current generation PHY’s (2012) and promise even better power management in the future.

Backplane

Backplane Ethernet, also known as 802.3ap, is used in backplane applications such as blade servers and modular routers/switches with upgradable line cards. 802.3ap implementations are required to operate in an environment comprising up to 1 meter (39 in) of copper printed circuit board with two connectors. There are two port types for 10 Gbit/s Backplane specs, (10GBASE-KX4 and 10GBASE-KR). New backplane designs use 10GBASE-KR rather than 10GBASE-KX4.

Conclusion

The growth in the number of 10Gb Ethernet networks and the improved efficiency in the physical layer components, have allowed 10Gb Ethernet deployments to have a much broader footprint. 10GbE optics like 10GBASE-T copper SFP+ transceiver module begin to take up a foothold in 10G network deployment. More importantly, 10GBase-T provides a cost-effective method for migrating from your current network to 10G Ethernet by utilizing your existing RJ-45 copper short connections. For 10GbE network components, you get them either on Amazon, Mikrotik, HP or FS.COM.

How to Solve the Problems When Using SFP Optical Transceiver

The small form-factor pluggable (SFP) optical transceiver is one of the protagonists of modern networking, which is a hot-swappable, compact media connector used for telecommunication and data communications. It is designed to provide instant fiber connectivity for your networking devices, such as routers and switches. It is a cost-effective way to connect a single network device to a wide variety of fiber cable for different distances and fiber types, including Ethernet, SONET, single-mode fiber, and multi-mode fiber. Therefore, most people are using SFP optical transceivers for their 1G transmission, especially Cisco SFP transceiver. At the same time, there are many problems when using these SFP optical transceivers. This article may summary the problems that may occur and provide the guided solutions for you, as well as give you some notes for maintaining the quality of SFP optical transceivers.

SFP Transceiver

Problems & Solutions

Some problems may appear when we are using SFP optical transceivers. Now let’s talk about why these problems happen and how to solve these problems. The problems are classified as transmitting failure and receiving failure. The problems and solutions are as follows:

Optical Interface Is Polluted and Damaged

Owing to the pollution and damage of the optical interface, its optical link loss become higher, resulting in the optical link fails.

Solutions
  • Testing the environment of the exposed optical interface, some dust and pollution may enter into the structure.
  • Testing the link ending of optical fibers, because the optical interface may experience second pollution.
  • Testing the interface of the optical connector with pigtail, it may have some improper uses.
  • Testing the quality of fiber optic connectors, you could use the inferior optical fiber connectors.
Damage of ESD(Electro Static Discharge)

Static electricity will absorb dust, which may change impedance line and affect the life and function of the product. The ESD will damage components, which may work in short-term, but their life is still affected.

Solutions
  • Avoiding the dry environment, for which easily produce the ESD.
  • Avoiding the abnormal operation. For example, operating the non-hot-swappable optical modules with electricity; directly touching the pin of optical transceiver modules by hand without ESD protection; there is not anti-static packaging during the transport and storage process.
  • Avoiding non ground-connection or bad ground connection.
  • Improving the ESD immunity of electronic components, because the ESD is inevitable.
Incompatibility

While SFP transceivers are fully-compliant with IEEE 802.3 and the SFP multi-source agreement (MSA), they may not be compatible with some network switch equipment. Because some switch manufacturers program their equipment to accept only their own brand of SFPs.

Solutions

Each SFP module holds its own memory in Electrically Erasable Programmable Read – Only Memory (EEPROM). This memory is coded with unique identifiers. The firmware of the host device will check the memory for the correct information to confirm compatibility. A SFP transceiver will work in any host device as long as it has the correct coding. Advance transceivers are coded specifically to suit each host device to avoid this problem.

Notes for Maintaining the Quality of SFP Transceiver

Quality is also very important for SFP optical transceiver, for which is the top priority of customers. Here are some notes:

  • Finding the failure product in advance before shipment
  • Prohibiting the faulty module to leave the factory
  • Decreasing reject rate
  • Guaranteeing the working stability of the products after leaving the factory
Summary

SFP optical transceivers provide a cost-effective and flexible solution for network designs. I hope this article can help you solve the problems when you are using the products and learn how to avoid these problems.

What Leads to Mechanical Splice Failure in Fiber Optic Termination?

Mechanical splice connectors are popularly used in FTTH (fiber to the home) fiber optic termination, since they are flexible, cost-effective and quick for field installation. As the FTTH network gradually becomes more widely implemented, fiber optic termination, especially indoor termination, has well become a focus of FTTH network deployment. Though current vendors can provide various types of pre-polished ferrule connectors of high quality which have low insertion loss and high performance, it is still very hard to make a perfect fiber optic termination even with advanced mechanical splicing technology. Because of inappropriate handling, fiber optic termination failures or bad fiber optic termination can occur in mechanical splice. In order to get a good termination, this article will introduce the most common factors that can lead to mechanical splice termination failures and some tips to avoid them.

Brief Introduction to Mechanical Splicing Steps

Before going to the reasons for mechanical splice termination faults, let’s briefly review the steps for mechanical splicing. Firstly, the buffer coatings of fiber optic cable should be mechanically removed, by using sharp blades or calibrated stripping tools. It is important not to damage the fiber surface in any type of mechanical stripping. Then the fibers will be cleaved. After the two fiber ends are held closely and optimally aligned in a mechanical splice connector, some index gel is used between them to form a continuous optical path between fibers and reduce reflecting loss.

mechanical-splicing

Mechanical Splice Termination Defects

Mechanical splice connector is sensitive equipment. And there are many factors that can cause mechanical splice termination failures. However, most of the factors are located at the end face of optical fiber, which may include contamination, glass fragmentation, bad cleave and excessive fiber gap.

Contaminants Between Fiber Ends

Contamination is the usually the first thing to think about when mechanical splice termination failure occurs. There are many ways that contamination can be carried into the fiber termination splices. Generally, the following incorrect operation can cause splice contamination:

1. Use a dirty cleave tool: s the fiber should be cleave before inserted in the connector, a fiber optic cleaves would be used. If a dirty cleave is used, the contamination would be attached on the end face of the fiber optic and be embedded in the connector. Thus, do remember to clean the surfaces thoroughly with alcohol wipes;
2. Wipe the fiber after cleaving;
3. Set the connector or fiber down on a dusty surface;
4. Splice in a heavy airborne dust environment;
5. Cause glass fragments from insertion broken fibers, or applying excessive force;
6. Use polluted index matching gel.

comtamination

Please note that once the contamination is carried inside the mechanical splice connector, especially with the index matching gel, there would be little possibility to clean them out, which means the connector may be scrapped.

Glass Fragmentation

Improper operation like overexertion when inserting the fiber optic into the mechanical splice connector might break the fiber optic and produce glass fragmentation which will cause air gap and optical failure. Or if a broken fiber if inserted, there will also be optical failure. If the glass fragments are embedded in the connector, they cannot be cleaned out and the connector would be scrapped. Thus, be gentle and carefully when splicing the fiber ends.

glass-fragmentation

Bad Cleave

Cleaving the fiber optic is an important step during fiber optic mechanical splicing. The quality of the cleave can decide the quality of the optical splice transmission to some degree. It is not easy to inspect the cleave quality in the field. There are several possibilities that might cause bad cleaves:

1. Use dull or chipped cleave tool blade
2. The bent tongue on the cleave tool concentrated too much bend stress on the fiber
3. Bend the fiber too much or too tight of a radius
4. Apply no tension or insufficient tension to the fiber while cleaving.

bad-cleave

During fiber cleaving, excessive cleave angle can be produced easily and is difficult to be inspected in field. These angles are typically ranging from 1 to 3 degree. Even with precision tool, there might still be cleave angle ranging from 0.5 to 1 degree. The angle is generally produced by bent tongue, fiber bending or insufficient fiber tension.

cleave-angle

Luckily, the cleave angles can be corrected by fine tuning with a VFL (visual fault locator). Rotating the fiber while using a VFL and terminate the connector at the right position.

fiber-gap

Excessive Fiber Gap

Fiber gap is another factor that might cause the fiber optic termination failure. Improper operations that might cause the excessive fiber gap are listed as following:

1. Cleave the fiber without enough lengths;
2. The fiber is not fully inserted, or pulled back during termination;
3. The fiber was not held steady during termination and was pushed back into the fan-out tubing when terminating outdoor cable.

These faults can be corrected on time.

fiber-gap

Conclusion

This article has introduced some factors that will lead to mechanical splice failures in fiber optic termination, and some tips are also included to ensure good splice transmission. After knowing these factors we can see that it is not enough to choose good mechanical splice connector and high quality fiber optic cleaver. Concentrating on proper operations and using right tools for mechanical splice are key to avoid bad results in mechanical splice termination.