Which LC Duplex Connector Suits Your Network?

As data processing technology has advanced rapidly, smaller and more compact cabling components also meet their golden age. Nowadays, there are a number of connectors in the market. However, LC connector, also well-known as the SFF (Small Form Factor) connectors, is currently the most frequent used types in LANs and data center. However, do you really know them well? And do you know which one suits your network better? Today, this post will get you to know more about LC duplex connectors.

Typical Type—Standard LC Duplex Connector

The standard LC duplex connector, namely the traditional type, was developed by Lucent Technologies. It is designed with a retaining tab mechanism that is similar to the RJ45 connector. Its connector body is squarish shape that is similar to SC connector. Thus, LC is also called mini SC. Standard LC duplex connectors are LC with a duplex configuration with a plastic clip. The ferrule of a LC connector is 1.25 mm. As the basic type, the standard LC duplex connectors are universal in various fiber optic network applications.

lc-duplex-connector

Variant Type—Mini-LC Duplex Connector

The mini-LC duplex connector is a variation of standard LC. It uses current industry-standard LC connectors but allows closer ferrule spacing by using the duplex clip (usually with color coding)—mini-LC has a reduced center spacing of 5.25 mm compared to a standard LC of 6.25 mm. And this type of LC duplex connectors is designed to operate with the Mini SFP transceivers and it enables a higher density deployed port count for data center network equipment. Generally, black color duplex latch clips and boots are used to distinguish the mini-LC duplex connectors.

Network Safeguard—Keyed LC Duplex Connector

There are 12 color-coded keyed designs in keyed LC assemblies. Each color of keyed LC duplex connectors represents a unique keying pattern which only allows its matched color-coded adapter mating. And the keyed features cannot be duplicated with standard LC components thereby keyed LC duplex connectors can reduce the risk of accidental or malicious network access, particularly in shared access areas or in secure hierarchical environments.

lc-keyed

High-density Application Helper—LC Duplex Uniboot Connector

LC duplex connector with uniboot is two LC connectors encased in a common housing with one boot, terminated on a single twin-fiber round cable. This type of connector is more compact compared to standard LC duplex. And the extended longer latch on top of the connector body makes it easier to disengage from the adapter, even in high-density packaging. Fiber patch cables terminated with uniboot LC duplex connectors, are ideal for high-density cabling application since they can reduce more fiber counts and greatly reduce cable management space.

lc-uniboot-duplex-connector

High-density Installation Assistant—LC-HD Duplex High Density Connector

If you have the experience of releasing LC duplex connectors in patch panels in high-density cabling, you may know how difficult this can be. Because in the cabling case, thumbs and forefingers are not ideally suited to operate the release lever and pulling the connector. But LC-HD duplex connectors can solve this problem perfectly. With a flexible “pull-tab” or “push-pull tab”, the LC-HD duplex connectors enable the connector to be disengaged easily from densely loaded panels without the need for special tools, which allows users easy accessibility in tight areas when deploying in data center high-density applications.

lc-hd-patchcord_%e5%89%af%e6%9c%ac

Conclusion

There are diverse variants of LC duplex connectors. Different types have different features. But as the fiber optic communication is developing quickly and the increasing requirements for smaller size components, choosing the suitable connectors is important. Of course, choosing which one is based on your actual applications and particular needs. FS.COM provides various kinds of fiber optic connectors and cables with those connectors which can maximize the effectiveness for your high-density applications, data centers, interconnect and cross-connect, private networks and premise installations. Besides, after reading this post, do you know whether you have chosen the right connector for your network?

Fiber Optic Pigtail Selection Guide

With the network cabling environment becoming more and more complex, there is a growing need to terminate fiber optic cables in an efficient and faster manner. Apart from fiber connectors, fiber optic pigtails also can offer a quick way to achieve this goal. Today, this post will introduce the basics and common types of fiber optic pigtail for your reference during pigtail selection.

What Is Fiber Optic Pigtail?

Fiber optic pigtail, sometimes also called bare fiber, is a piece of optical cable terminated with optic connectors at only one side while leaving the other side no connectors. So the side with connector can link to the equipment (eg. optical transceiver or fiber converter module) and the other side can be melted with fiber optic cables. Besides, fiber optic pigtail have a similar structure with fiber optic patch cords which are terminated with connectors on both ends. Sometimes, technicians may need to cut down the fiber optic patch cords in the middle to get two fiber pigtails. Fiber optic pigtails are usually used with fiber optic management equipment like ODF (optical distribution frame), splice closures and cross cabinets.

fiber-pigtail

Selecting Guidance

Fiber optic pigtails are designed to meet or exceed all of the performance requirements for current and proposed applications. They are available in various types, and which type is suitable for your network? Here is a simple selection guide.

According to the Fiber Connector

As we all know, there are a number of fiber connectors. Therefore, according to fiber connector, fiber optic pigtail also can be divided into various types.

LC fiber optic pigtail—as its name shows, this pigtail uses the LC connector. The LC connector is one of the most well known and used optical connector types in the world nowadays. It features low cost and high precision 1.25mm outer diameter ceramic ferrules. And LC fiber optic pigtails are suitable for high-density installations. What’s more, Fiberstore offers a new type of optical pigtail—keyed LC pigtail. This pigtail has different colors and can only be connected with the same colored adapter, which offers mechanical network security for organizations that want to segregate networks due to privacy or security concerns.

FC fiber optic pigtail—the pigtail use the metallic body FC optic connectors. And it’s well known that FC connectors feature the screw type structure and high precision ceramic ferrules. FC fiber optic pigtails and its related products are widely applied for the general and average applications.

MTRJ fiber optic pigtail—this pigtail use the MTRJ connectors that are specially designed for fast Ethernet. And MTRJ fiber optic pigtail connectors are all duplex types with a mini ribbon fiber inside. They have the features of the MT and RJ45 connectors. MTRJ optical fiber pigtails are small form connector products that fit for density applications.

Of course, except for the fiber optic pigtails mentioned above, there are other types of optical pigtails such as SC, ST, MU and E2000 fiber optic pigtails which also play a vital role in optical communication.

According to the Application Environment

Generally speaking, whether natural or manmade, cataclysmic or catastrophic, rugged and unforgiving environments need the use of high-performance fiber optic cables. So does fiber optic pigtails. Here are two commonly used pigtails which perform well in harsh environment.

Armored Pigtail

During some fiber optic installations, there is a need to provide extra protection for the cable due to the installation environment. Enclosed with stainless steel tube or other strong steel inside the outer jacket, armored fiber optic pigtails could provide extra protection for the optical fiber and added reliability for the network and reduce the unnecessary damage due to rodents, construction work, weight of other cables and other factors.

armored-pigtail

Waterproof Pigtail

Waterproof pigtail is designed with a stainless steel strengthened waterproof unit and armored outdoor PE (Poly Ethylene) jacket for further protection. With this special structure, it can be used in harsh environments like communication towers, CATV and military. Waterproof pigtail has good toughness, tensile and reliable performance. It is mainly deployed in outdoor connection of the fiber optical transmitter.

waterproof-pigtail

Conclusion

Fiber optic pigtails can be divided into different types according to different criteria. As a professional fiber optic components supplier, FS.COM provides various kinds of fiber optic pigtails with different fiber counts such as simplex, duplex, 4 fibers, 6 fibers, 8 fibers, 12 fibers, 24 fibers, 48 fibers and so on. All of these fiber pigtails can provide an easy and fast way for your fiber terminations. If you have any question, please kindly contact sales@fs.com.

Comparison Between Active and Passive Optical Network

As time goes by, in order to meet the need for higher bandwidth, faster speed and better utilization of fiber optics, FTTH access networks designs have developed rapidly. And there are two basic paths of FTTH networks: active optical network (AON) and passive optical network (PON). However, how much do you know about the them? Do you know what’s the differences between the two systems? Now, this article will give a detailed comparison between them.

Active Optical Network (AON)

Active optical network, also called point-to-point network, usually uses electrically powered switching equipment such as a router or switch aggregator, to manage signal distribution and direct signals to specific customers. This switch opens and closes in various ways to direct incoming and outgoing signals to the proper place. Customers can have a dedicate fiber running to his or her home, but it needs many fibers.

aon

Passive Optical Network (PON)

Different from AON, PON doesn’t contain electrically powered switching equipment, instead it uses fiber optic splitters to guide traffic signals contained in specific wavelengths. The optical splitters can separate and collect optical signals when they run through the network. And powered equipment is needed only at the signal source and the receiving ends of the signals. Usually, the PON network can distribute signals into 16, 32 and 64 customers.

pon

AON vs. PON

As data travel across the fiber connection, it needs a way to be directed so that the correct information can arrive at its intended destination. And AON and PON offer a way to separate data and set it upon its intended route to arrive at the proper place. Therefore, these two networks are widely applied in FTTH systems. However, each system has their own merits and shortcomings. Here is a simple comparison between them.

Signal Distribution

In AON networks, subscribers have a dedicated fiber optic strand. In another word, each subscriber gets the same bandwidth that doesn’t be shared. While the users share the fiber optic strands for a portion of the network. These different network structures also lead to different results. For example, if something goes wrong in a PON network, it will be difficult to find the source of the problem. But this problem does not exist in AON.

Equipment

As we have noted above, AON directs optical signals mainly by powered equipment while PON has no powered equipment in guiding signals except for two ends of the system.

Cost

When running an existing network, it’s known to us that the main source of cost is the maintenance and powering equipment. However, PON uses passive components that only need less maintenance and do not need power, which contributes to that PON building is cheaper than that of AON.

Coverage Distance

AON networks can cover a range to about 100 km, a PON is typically limited to fiber cable runs of up to 20 km. That is to say, subscribers must be geographically closer to the central source of the data.

Of course, apart from what have been listed above, there are other differences between these two networks. For instance, AON network is currently the industry standard. It’s simple to add new devices to the network. And there are numbers of similar products on the market, which are convenient for users to select. Besides, AON is a powered network, which decides it’s less reliable than PON. However, since the bandwidth in PON is not dedicated to individual users, people who use a passive optical network may find that their system slows down during peak usage times.

Conclusion

In summary, AON and PON have their own advantages and disadvantages, but both of them provide practical solutions for FTTH network connection. There is no right or wrong answers when it comes to choose which one of them. FS.COM provides several kinds of PON equipment such as PON splitters and OLT/ONT Units. If you want to find out more, please visit Fiberstore website.

Brief Introduction to Fiber Optic Termination

When it comes to install a fiber optic network, undoubtedly, fiber optic termination is one of the extremely important procedures. Since an unreliable network will cause many problems and may not perform correctly. Therefore, much attention is paid to this area today, and numerous related products are appearing on the market to make fiber optic termination easier and more accurate than before.

What Is Fiber Optic Termination?

Fiber optic termination is the connection of fiber or wire to a device such as a wall outlet or equipment, which allows for connecting the cable to other cables or devices. It is an essential step for installing a fiber optic network. Since any mistakes can lead to the system functioning unreliably, this step must be operated correctly.

fiber-optic-termination

Methods of Fiber Optic Termination

Generally, there are two methods of fiber optic termination. One is to use connectors to create a temporary joint or to connect the fiber to a piece of network gear. Another is to create a permanent joint between two fibers with splicing. Here is a brief overview of this two methods.

Connectors

Fiber optic connectors are unique. They transmit pulses of light rather than electric signals, so the terminations must be more precise. Instead of merely making metal to metal contact, fiber optic connectors must align precisely so that signals can run through successfully. Although there are various types of connectors on the market, they share the same structures. And there are three major components of a fiber optic connector: the ferrule, the connector body and the coupling mechanism.

  • Ferrule—This is a thin structure (often cylindrical) that holds the glass fiber. It has a hollowed-out center that forms a tight grip on the fiber. Ferrules are usually made from ceramic, metal, or high-quality plastic, and typically will hold one strand of fiber.
  • Connector body—this is a plastic or metal structure that holds the ferrule and attaches to the jacket and strengthens members of the fiber cable itself.
  • Coupling mechanism—this is a part of the connector body that holds the connector in place when it gets attached to another device (a switch, NIC, bulkhead coupler, etc.). It may be a latch clip, a bayonet-style nut, or similar device.

There are various types of connectors available on the market such as SC, LC, FC, MPO, MTRJ, etc. When install a network, problems about the connector type should be considered. For example, whether the connector is compatible with this systems planned to utilize the fiber optic cable plant and whether the connector is accepted by the customers.

LC-SC-FC-ST-connector

Splicing

Fiber optic splicing is needed when the cable runs are too long or a numbers of different types of cables are needed to be mixed. As mentioned above, splicing is to connect two fibers permanently. Splicing also has two types. One is mechanical splicing and another is fusion splicing. Fusion splicing is most widely used as it provides the lowest loss and least reflectance as well as the most reliable joint. While mechanical splicing is like connectors which only combine fibers temporarily.

How to choose splicing types depends on the installation locations or cost. Most splicing is on long haul outside plant single-mode cables, not multimode LANs (Local Area Networks). So if you do outside plant single-mode jobs, you will want to learn how to do fusion splice.

Fiber-Optic-Splicing

Fiber Optic Termination Loss Mechanisms

We have known the methods of fiber optic termination, and what we should make sense is that, no matter which methods we adopt, the loss is unavoidable. And now I’d like to talk about the loss mechanisms caused by connectors and splicing.

Connector and splice loss is caused by a number of factors. As we all known, when the two fiber cores are identical and perfectly aligned, the loss is minimized. And only the light that is coupled into the receiving fiber’s core will be transmitted. The rest of the light becomes the loss. Here are some common causes that appear in fiber optic termination, which can result in loss.

End Gaps

End gaps can result in two problems—insertion loss and reflectance. When light runs in the end gaps, it will become cone shape and spill over the core of the receiving fiber and be lost. Besides, the air gap in the joint also causes a reflection. Because when the light runs from the glass fiber to the air in the gap, the different refractive index can lead to loss.

end-gap

Core Diameters

Different core diameters connected together also can cause light loss. And the loss amount is determined by the transmission direction. When light transmits from a fiber with a larger core diameter to a small one, the loss will be higher than the reverse. So when terminating two fibers, it’s important to make the core diameter of them identical.

core-mismatch

Improper Fiber Ends

Improper fiber ends can cause loss, too. Therefore, the end finish of the fiber must be properly polished to cut loss. A round surface will scatter light, and dirt also can scatter light. Since the fiber is so small that a little dirt can be a major source of loss. Whenever connectors are not used, they should be covered to keep the ferrule from dirt.

Conclusion

In summary, this article introduces some basic information about fiber optic terminations. And the fiber optic termination process has become much simpler today with readily available termination products. Fiberstore provides all kinds of fiber optic connectors and splicing equipment for you to make your fiber optic terminations easier and more convenient.

Get Further Understanding of Keyed LC Connectivity Assemblies

Nowadays, with high speed communication networks evolving quickly, great importance has been attached to data security. Network managers must guard against not only non-contact eavesdropping, but also physical intrusion or tapping of the cables. Any of these security threats can result in serious problems or great economic loss. Luckily, keyed LC products can provide the security necessary to limit authorized physical access to the network and prevent inadvertent or malicious access. Maybe you may feel a little surprised at this. How keyed LC products can achieve it? Now let’s get together to know more about the keyed LC connectivity assemblies.

What Is Keyed LC Connectivity System?

The keyed LC system is a small form factor (SFF) connection system which allows manageable and easily identifiable network segregation by using a range of physically unique keyed connector and adapter combinations. Each color stands for a unique pattern, which ensures that only the same-colored products can be connected to support the data link. With this special characteristics, keyed LC components are perfect for high density networks and can effectively reduce some wrong connections caused by accident mistakes.

Overview of Keyed LC Connectivity Assemblies

There are many kinds of keyed LC connectivity products in fiber optic communication. Each of them has different specifications and applications. And they comprise a range of network equipment to enable deployment of a high performance low loss network. Now, here is a brief overview of these connectivity assemblies members.

Keyed LC Fiber Optic Patch Cables

Keyed LC fiber optic patch cable, also called secured LC fiber patch cable, is a critical element in the keyed LC connectivity products assemblies. The LC connectors on both ends of the cable have specific color codes and functional keyed features to identify and manage restricted network connections, which ensure the data security at the mechanic level. Keyed LC fiber patch cable should be used with the same colored fiber adapters or fiber adapter panels. Because each color represents a unique keying pattern that only allows matching same color mating. This is how keyed LC fiber patch cable can provide data security for the fiber optic network.

keyed-LC-Fiber-Optic-patch-cable

Keyed LC Fiber Optic Adapters

Keyed LC fiber optic adapter has the similar features with keyed LC patch cables. Each adapter is color coded for identification and features a mechanical key, preventing users from accidentally wrong connections. Besides, our keyed couplers utilize a ceramic sleeve suitable for both single-mode and multimode applications. The keyed LC adapters are widely used in Telecom/Datacom, CATV (Community Antenna Television), FTTH(Fiber to the Home), premises distribution and Gigabit applications.

Keyed-LC-Fiber-Optic-Adapters

Keyed LC Fiber Optic Adapter Panels

Keyed LC adapter panels with specific color and functional keyed features can identify and manage restricted network cross-connections. Generally, keyed LC fiber optic adapter panels are widely used in restricted fiber cross-connect systems, network-specific backbone and horizontal cross connections.

Keyed-LC-Fiber-Optic-Adapter-Panel

Keyed LC Fiber Optic Cassettes

Keyed LC Cassettes usually support restricted network applications in the data center, equipment room, and telecommunications room. They are designed to prevent unauthorized and inadvertent changes in highly sensitive applications. FS.COM keyed HD MTP/MPO cassettes that have several fiber types provide mechanical security and prevent inadvertent cross connection between MTP and LC discrete connectors.

Keyed-LC-Fiber-Optic-Cassettes

Of course, except for what I have mentioned above, there are other keyed LC connectivity assemblies such as keyed LC connectors, keyed LC pigtails and so on.

Conclusion

With the application of Keyed LC components, networks can be effectively limited to certain groups, access levels or customers in a co-location environment. This provides an increased level of security and stability by protecting against incorrect patching of circuits. What’s more, there are 12 different colors of the keyed LC products available in Fiberstore, you can build a satisfied keyed LC system by choosing what you like here.

How to Maintain Your Fiber Optic Fusion Splicer?

Fiber optical splicing is the act to joint two fibers together by using heat. Generally, there are two types of optical splicing: mechanical splicing and fusion splicing. Fusion splicing cannot be completed without a piece of equipment called fusion splicer. However, you can’t just use it without any maintenance. Do you know how to maintain it in your daily work? Today, this article is to give you some advice for your fusion splicer maintenance.

What Is Fiber Optic Fusion Splicer?

Fiber optic fusion splicer uses an electric arc to melt two optical fibers at the level of their faces to end and form a long fiber. It connects two fibers permanently so that the optical signals can be transmitted in the fiber with a very low loss.

fusion-splicer

How Does a Fusion Splicer Work?

Before we know how to maintain our fusion splicers, we need to make sense how it works. Only when you know clearly its work process can you get how to avoid some unnecessary mistakes which may cause great damage to your fusion splicer.

Usually, before starting a fusion splicing, the preparations need to be finished: removing all the protective coating, completely clean and then precisely cleaving to form a smooth and perpendicular end faces. When all of these have been done, the fiber optic fusion splicer takes over the rest of the process which includes three steps.

Alignment. With the help of a small but precise motor, the fusion splicer makes tiny adjustments to the fibers’ positions until they are aligned properly. During this process, the fiber optic workers can view the fiber alignment by optical power meter video camera or viewing scope.

Impurity Burn-Off. Since the slightest trace of dust or other impurities can affect the transmission of optical signals, cleaning is always the first important thing needed to be done. Before fusing, fusion splicer can generate a small spark between the fiber ends to burn off the remaining dust or moisture.

Fusion. After fibers have been aligned and thoroughly cleaned, it’s time to fuse the fiber ends together. The splicer emits a second, large spark that melts the optical fiber end faces Then the melted fibers are jointed together.

Daily Care and Maintenance

Now we have know how the fusion splicer works, it’s time to learn something on how to maintain fusion splicer to make sure the fusion procedures go on wheels. Here are some tips on how you can maintain your fusion splicers. These tips are mainly about the cleaning in the fusion process.

Cleaning Before Splicing
  • Clean the V-groove. If there are contaminants in the V -groove, it cannot clamp fiber properly and will cause unnecessary optical loss. Therefore, the V -groove should be checked and cleaned regularly. Generally, a thin cotton swab dipped with alcohol can be used to clean V-groove. If it doesn’t work, first you can use a fiber that has been cleaved to remove the contaminants, and then clean the V -groove with thin cotton swab.

cleaning-fusion-splicer

  • Clean the Fiber Clamp. If there are dusts on the fiber clamp, it may lead to poor fiber connections. So the cleaning of fiber clamp cannot be ignored in your daily work. Firstly, cleaning the surface of fiber clamp with a thin cotton swab dipped with alcohol. Then dry the clamp with a dry cotton swab.

cleaning-fusion-splicer

  • Clean the cleaver. Always keep in mind that the cleaver blade should be kept clean, or it will bring dust to the fiber end face, resulting big splice loss. The method to clean the cleaver blade is to clean it with cotton swab.

fiber-cleaver

Regular Inspection and Cleaning

In order to ensure the quality of fusion splicing, it’s recommended to do regular inspection and cleaning for the fusion splicer. The check items include objective lens, windshield and electrodes.

Conclusion

In summary, it’s vital to maintain fusion splicer to ensure a precise fusion splicing. Of course, good maintenance is necessary, but obviously a good fusion splicer is more important. Fiberstore provides various types of fiber optic splicer and some other accessories which can make splicing much easier and more stable. If you want to know more, please visit FS.com.

Optical Amplifier Overview

When it comes to optical fiber communication, we are impressed with its fast speed, large information capacity and bandwidth. To achieve this result, numbers of optical components play key roles in optical systems. Optical amplifier is one of them. When transmitted over long distance, the optical signal will be highly attenuated. On this situation, optical amplifier makes a difference. Today, this article will give a brief overview about optical amplifier to help you learn more about it.

What Is an Optical Amplifier?

Usually a basic optical communication link consists of a transmitter and receiver, with an optical fiber cable connecting them. Even if signals in fibers suffer less attenuation than in other mediums, there is still a limited distance about 100 km. Beyond this distance, the signal will become too noisy to be detected.

Optical amplifier is a device designed to directly amplify an input optical signal, without needing to transform it first to an electronic signal. And at the same time, it can strengthen the signal, which is conducive to transmission over long distances. Here is a comparison figure. In the (a), it is an electrical signal regeneration station. We can see all the channels are separated, signals detected, amplified and cleaned electrically, then transmitted and combined again. However, in the figure (b), it is an optical amplifier in which all channels are optically and transparently amplified together. Compared to electrical amplifier, optical amplifier is more cost-effective. Because it amplifies signals directly, and needs less cost.

comparison

Common Types

Generally, there are three common types optical amplifier: the erbium doped fiber amplifier (EDFA), the semiconductor optical amplifier, and the fiber Raman amplifier.

Erbium Doped Fiber Amplifier (EDFA)

The amplifying medium of EDFA is a glass optical fiber doped with erbium ions. The wavelength near 1550 nm can be amplified effectively in erbium doped optical fiber amplifiers. What’s more, EDFA has low noise and can amplify many wavelengths simultaneously, making EDFA widely used in optical communications. According to the functions, EDFA usually has three types: booster amplifier, in-line amplifier and pre-amplifier.

A booster amplifier operates at the transmission side of the link, designed to amplify the signal channels exiting the transmitter to the level required for launching into the fiber link. It’s not always required in single channel links, but is an essential part in WDM link where the multiplexer attenuates the signal channels. It has high input power, high output power and medium optical gain. The common types are 20dBm Output C-band 40 Channels 26dB Gain Booster EDFA, 16dBm Output C-band 40 Channels 14dB Gain Booster EDFA and so on. Of course, there are still different specification of booster amplifiers which cannot be listed here. Here is a picture of 23dB Output 1550nm Booster EDFA Optical Amplifier.

booster amplifier

An in-line amplifier typically operates in the middle of an optical link, which is designed for optical amplification between two network nodes on the main optical link. It features medium to low input power, high output power, high optical gain, and a low noise figure.

At the end a pre-amplifer makes a difference. Pre-amplifier is used to compensate for losses in a demultiplexer near the optical receiver. It has relatively low input power, medium output power and medium gain.

pre-amplifier.png

Semiconductor Optical Amplifier

Semiconductor optical amplifier (SOA) uses a semiconductor to provide the gain medium. It operates with less power and is cheaper. But its performance is not as good as EDFA. SOA is noisier than EDFA. Therefore, SOA is usually applied in local area networks where performance is not required but the cost is an important factor.

Raman Amplifier

In a fiber Raman amplifier, power is transferred to the optical signal by a nonlinear optical process known as the Raman effect. Distributed and lumped amplifiers are the two common types of Raman amplifier. The transmission fiber in distributed Raman amplifier is utilized as the gain medium by multiplexing a pump wavelength with the signal wavelength, while a lumped Raman amplifier utilizes a dedicated, shorter length of fiber to provide amplification. Here is a Raman amplifier.

raman-amplifier.jpg

Conclusion

Optical amplifiers perform a critical function in modern optical networks, enabling the information transmitted over thousands of kilometers and providing the data capacity which current and future communication networks are required. Amplifiers mentioned above are available in Fiberstore. If you are interested, please visit FS.COM for more information.

Fiber Cleaver – An Essential Tool for Fiber Splicing

In the world of fiber splicing, fiber cleaver is an important tool that cleaves the fibers to be spliced precisely. It is the warranty of a good splicing because the quality of the splice will depend on the quality of the cleave. And high quality fiber breaks with clean surfaces are the yardstick for good fiber cleavers. This article will provide some knowledge about fiber cleavers.

Basics of Fiber Cleaver

In optical fiber, a cleave means a controlled break that intentionally creates a perfect flat end face which is perpendicular to the longitudinal axis of the fiber. Fiber optic cleaver is used in most production lines. It can give a precise cut at a cleave angle of 90 degrees to the fiber end. Cleavers are available for both single fiber or ribbon fibers.

Two kinds of fiber cleavers are often seen in the market. First is the pen-shaped scribe cleaver, which looks like a ballpoint pen. It has small wedge tip made of diamond or other hard materials. Scribe cleaver is a traditionally low-cost fiber cleaving tool using the scribe-and-pull method to cleave the fiber. The operator may scribe the fiber manually and then pull the fiber to break it. But it is difficult to achieve high cleaving accuracy by this tool.

scribe-cleaver

Therefore, in order to solve the problem of accuracy, the precision cleaver is introduced to the industry. This might cost you much higher than the scribe cleaver, but your working speed and efficiency can be greatly improved since multiple fibers can be cleaved at one time. With the extensive applications of fusion splicers, precision cleavers are favored by operators to avoid splice loss.

precision-cleaver

How to Use Precision Cleaver?

Precision cleaver is the mechanical device, which looks a little difficult for novices to deal with. Here are some simple steps that you can follow when using the precision cleaver:

  • Step one, open the fiber clamp.
  • Step two, press down on the button and slide the carriage back.
  • Step three, move the fiber slide back until it stops.
  • Step four, clean the stripped fiber with a solution of greater than 91% ISO alcohol.
  • Step five, place the stripped and cleaned fiber into the slot at the desired cleave length.
  • Step six, while maintaining firm pressure on the buffer, move the fiber slide forward until it stops.
  • Step seven, close the fiber clamp.
  • Step eight, slide the carriage forward.
  • Step nine, lift the fiber clamp.
  • Step ten, move the fiber slide back.
  • Step eleven, remove the fiber, which is now cleaved to the proper length.
  • Step twelve, remove and properly dispose of the scrap fiber.
Precautions for Fiber Cleaving

Make sure you comply with these precautions during the process of fiber cleaving:

  • First, wear a pair of safety glasses. This can protect your eyes from accidental injury. It is highly recommended when handling chemicals and cleaving fiber.
  • Second, be careful when using ISO alcohol. Keep the ISO alcohol away from heat, sparks and open flame. This is because the ISO alcohol is flammable under the flash point of 73° F. It can also cause irritation to eyes on contact. In case of eye contact, flush eyes with water for at least 15 minutes. Moreover, inhaling fumes may induce mild narcosis. In case of ingestion, consult a physician.
  • Third, store cleaved glass fibers in proper place. Since cleaved glass fibers are very sharp and can pierce the skin easily. Do not let cut pieces of fiber stick to your clothing or drop in the work area where they can cause injury later. Use tweezers to pick up cut or broken pieces of the glass fibers and place them on a loop of tape kept for that purpose alone.
Conclusion

Having a qualified fiber cleaver enhances the cleaving precision and efficiency. Nowadays, precision cleaver has been widely applied to accurate fusion splicing. Proper investment is valuable for the long-term applications. If you want to get one for your project, FS.COM is a good place to go.

Finding a Perfect Fiber Media Converter for Your Network

Fiber media converter or fiber converter is a device that links two different media signals for conversion, usually exchanging the signals on a copper cable with signals on an optic fiber cable. This device is often used in MAN (metropolitan area network) access and data transport services to enterprise customers. Fiber media converter provides a balanced flow, isolation, conflict and detection of errors and other functions to ensure high security and stability of data transmission. It also breaks the restriction of the Ethernet cable length to more than one hundred meters.

For a long time, fiber media converter is an indispensable part of the actual network set up. And it will continue to transform towards the orientation of high intelligence, high stability, easy management and low cost. Of course, selecting a right fiber media converter is also very essential to the actual applications. This article will mainly introduce some aspects to be considered when purchasing the fiber media converter.

fiber-media-converter

Knowing Function of Fiber Media Converter

Knowing the function of fiber media converter helps you have a better understanding of your own system which contributes to the selection process. Generally speaking, fiber media converter receives data signals from one media and converts them to another while remaining invisible to data traffic and other net devices. It supports quality of service and layer 3 switching since it has no interference with upper-level protocol information. Fiber media converter changes the format of an Ethernet-based signal on twisted pairs into a format compatible with fiber optics. At the other end of the fiber cable run, a second media converter is used to change the data back to its original format.

Fiber media converter supports full duplex Ethernet over UTP at 20 or 200 Mbps, and half-duplex Ethernet over UTP at 10 or 100 Mbps. Full duplex Ethernet is more efficient for connecting two switches or one switch to a file server. Also, fiber optic media converter can automatically sense which mode is in operation without any adjustment for mode switching.

Other Factors to Consider During Your Selection

Here are some factors that you can consider when purchasing a fiber media converter:

  • First, according to different data rates, there are various fiber media converters to match the transmission speeds. Thus, data rates should be considered as an important factor.
  • Second, figure out what transmission media are in your network, and find the corresponding cable types. For instance, there are fiber to copper, single-mode fiber to multimode fiber, dual strand to single strand and so on.
  • Third, diverse fiber media converters have different port types. Typically, there are two types of ports, one for copper and the other for fiber. The copper ports are all designed for RJ45 copper cables. But in terms of fiber ports, there are also another two types. One is designed for fiber optic transceivers (SFP, XFP, etc), and the other for fiber optic patch cables (SC, LC, etc).
  • Fourth, transmission distances of fiber media converters are varied to satisfy different length demands.
  • Fifth, if main power is not available or difficult to deliver in physical locations, PoE fiber media converter can be an option to supply the required power.
  • Sixth, different power supplies are also available. For example, AC (alternating current) power supply, DC (direct current) power supply, internal power supply and external power supply are the common choices.
Applications

Fiber optic converters can be used in lots of applications. Here are some examples. Point to point application can connect two UTP Ethernet switches (or routers, servers, hubs, etc.) via fiber, or to connect UTP devices to workstations and file servers.

point-to-point-media-converter-application

10G Ethernet application extends distances between 10G switches and servers.

10G-Ethernet-media-converter-application

Multimode to single-mode application extends a multimode network across single-mode fiber with distances up to 160 km.

multimode-to-singlemode-media-converter-application

Conclusion

Fiber media converter plays an important role in today’s multi-protocol, mixed media networks. Many types of fiber media converters like fiber to RJ45 converters, SFP Ethernet converters are purchasable on the market now. Please regard this article as an reference for finding a suitable fiber media converter in your network.

Guide to CWDM MUX/DEMUX System Installation

CWDM (coarse wavelength division multiplexing) comes from the WDM system. It is designed to increase the capacity of a fiber optic network without adding additional fiber. The wavelengths of CWDM channels are spaced 20 nm apart which allows the use of low-cost, uncooled lasers. The wavelengths usually range from 1270 nm to 1610 nm.

Today, CWDM Mux/Demux (multiplexer/demultiplexer) module is an important device to increase the current fiber cable capacity by transmitting multiple wavelengths with up to 18 signal channels over a single fiber. When using a CWDM multiplexer at the beginning of the network, accordingly a CWDM demultiplexer should be used at the opposite end to separate the wavelengths and direct them into the correct receivers. This greatly reduces the number of fiber cables and other data links.

CWDM-Mux-and-Demux

Basic Components of CWDM MUX/DEMUX System

Several basic components constitute a CWDM Mux/Demux system. They are a local unit, a remote unit, a rack-mount chassis, CWDM Mux/Demux modules, CWDM SFP transceivers and single-mode patch cables. The local unit and remote unit are two different switches. The rack-mount chassis is needed to be installed for holding the CWDM Mux/Demux module. As for the connections, CWDM SFP transceivers are usually used between a CWDM Mux/Demux module and a switch, and single-mode patch cables are used to connect transceivers to the module.

Preparation Before Installation

Multiple single-mode patch cables are needed for CWDM Mux/Demux system connection. And the transceivers used in the system must support the wavelengths from 1270 nm to 1610 nm. Make sure the installation environment is in a dry and interior space. The module should have enough room to create airflow for easier heat distribution. Any inappropriate arrangement that obstructs the ventilation holes should also be avoided.

CWDM MUX/DEMUX System Installation

Step one, mount the system chassis on the rack. The CWDM rack-mount chassis can be mounted in a standard 19-inch cabinet or rack. Make sure that you install the rack-mount chassis in the same rack or an adjacent rack to your system so that you can connect all the cables between your CWDM Mux/Demux modules and the CWDM SFP transceivers.

mounting-system-chassis

Step two, install the CWDM Mux/Demux modules. You should first loose the captive screws on the blank of module panel and remove the panel. Then align the module with the slot of the chassis shelf and gently push the module into the slot. Finally, ensure that you line up the captive screws on the module with the screw holes on the shelf and tighten them up.

installing-CWDM-MuxDemux-modules

Step three, install CWDM SFP transceivers. Since each channel has a specific wavelength, transceivers must comply with the right wavelengths. Each wavelength must not appear more than once in the system. Device pairs must carry transceivers with the same wavelength.

CWDM-SFP-transceiver

Step four, install the CWDM Mux/Demux to the switch. After inserting the CWDM SFP transceiver into the switch, single-mode patch cables are used to connect the transceiver to the CWDM Mux/Demux module.

Step five, connect the CWDM MUX/DEMUX pairs. In a CWDM MUX/DEMUX system, multiplexer and demultiplexer must be installed in pairs. Two strands of single-mode patch cables are needed in the duplex Mux/Demux module, and one strand of single-mode patch cable is enough for the simplex Mux/Demux module.

When you finish all these steps, the installation of CWDM Mux/Demux system is successfully completed.

Conclusion

CWDM Mux/Demux system is definitely a good solution to high capacity data transmission. It is efficient for power, space and cost saving. And the installation procedure is easy to follow. All the components above are available in FS.COM. If you are interested, please come and visit our website for more information.