Dual Sided Vertical Cable Manager-Vertical Cable Management

As we know, proper cable management is part of one’s network’s performance and effectiveness. However, do you know what is the most difficult area of cable management? It’s the area on the equipment rack itself. You can manage the overhead cables by mounting them to the superstructure, and use a simple raceway-type solution to deal with the underfloor cables. But how to handle the rest cables vertically? Absolutely, You need a vertical cable manager. Vertical cable manager is used to house and organize fiber and copper cabling for good vertical cable management.

What Is Vertical Cable Manager?

Like the name implies, vertical cable manager is the equipment installed vertically. It can be installed on both sides of a rack or cabinet so that it can be called dual sided vertical cable manager. This kind of vertical cable management makes the utmost of the extra space of rack’s two sides to route fiber optic cables or patch cables effectively, while creating no impact on access to the equipment in the rack.

Dual Sided Vertical Cable Manager

Why We Use Dual Sided Vertical Cable Manager?

Some persons may ask, for cable management, I have selected the fiber patch panel, rack or cabinet to manage cables. Why do I still need to use the dual sided vertical cable manager? Let me answer it, because they are different cable management tools. Fiber optic patch panel is used to manage the equipment through the network cabling system. Data or signal can be delivered within a fiber patch panel, thus the data or signal can reach to the equipment successfully. A rack is the facility storing fiber patch panel, hard disk drivers and some computer correlation equipment. The dual sided vertical cable manager is just applied for tidying cabling which is along the sides of a rack. Remember, this equipment is not related directly with the network.

Using a dual sided vertical cable manager, technicians can snap off fingers, minimize downtime, maximize space, which brings a good network environment.

How to Use Dual Sided Vertical Cable Manager?

Here is a video to show you how the dual sided vertical cable manager works. It takes 45U 4.9″ Wide Plastic Dual Sided Vertical Cable Manager from FS.COM as an example. This product uses an oval hole design, making it easy for front-to-back cable routing. Flexible fingers on both sides ensure optimum cable radius not to damage cables. And to protect cables from damage or dust, the cable manager uses a PVC cover. After knowing the features of the product, let’s see how it works.

First, install the dual sided vertical cable manager. Put the plastic cable guide part on a flat surface. Then place the other cable guide over the connector brackets and press firmly until fully seated.

Second, position the cable manager next to the rack. Use the inserted brackets mount the vertical manager solidity to the rack. You can couple two 22.5U sections together. After that, insert each door into the hinges and press it tightly until it quickly settles.

Last, route cables through fingers of the dual sided vertical cable management.

Conclusion

Dual sided vertical cable manager is the compact and versatile solution in the server room or data center. With rich experience in this realm, FS.COM is engaged in offering best and excellent quality products of vertical cable management.

1U Rack Mount Fiber Patch Panel Cabling Solution

The world changes continuously, and data network has advanced much faster than anyone can keep up. Technicians are tired of dealing with the messy network, and may feel extreme anxiety about the inability to make an organized and structured cabling environment. Fiber optic enclosures are the glue that can connect cables together for delivering data or voice to multimedia and network services like LAN, WAN and ADSL. FS.COM 1U rack mount fiber patch panel cabling solution is the ideal method for easy cable management, including 1U patch panel, FHU 1U 24 port patch panel, and 1U lacer panel and lacing bar.

Function of Rack Mount Fiber Patch Panel

Rack mount fiber patch panel, as a cabling solution, can manage cables easily and connect the cabling distribution areas. This helps pave a way for a neat optical network approach. Often times, it’s used for connecting and disconnecting equipment. Therefore, a rack mount fiber patch panel is the key component for uptime, speed, performance and so on. In addition, with lots of ports in close proximity of the patch panel, cables here can be routed, labeled and monitored, offering a convenient routing option for IT staff.

cabling system

Cabling Solution Works With Fiber Patch Panels  

It’s no doubt that each successful project needs adequate preparation. So once you decide to set up a structured cabling system, it’s time to get right cabling component. Now, here are cabling solution tools offered by FS.COM for your reference.

1U rack mount fiber enclosure is designed with 1.55 SPCC steel rack and can hold up to 4 fiber adapter panels (FAPs) and MTP cassettes, allowing for 96 fiber cables installation with simple plug-n-play design.

FHU 1U 24 port patch panel serves as standard 1U 19 inches rack with high quality steel adapter. It’s ultra high density but with the correct spacing between the insert parts, for easy deployment. It can connect 96 fiber cables.

1U lacer panel and lacing bar provide multiple choices for your application by being separated into patch panel, d-rings, lacer panel and lacer bar. Together with FHD adapter panels and patch cords, it can make the end-to-end solution.

Installation Steps of 1U Rack Mount Fiber Patch Panel Cabling Solution

After preparing the tools, we should start to install. Cable installation can be a finicky thing. Therefore, to avoid potential network errors and reduce costly mistakes, here are steps for your reference.

  • Install 1U rack mount fiber enclosure. Place the mounting brackets at the desired position on the rack. Insert pre-terminated fiber optic cassettes into the enclosure as shown. Once mounted, fully seat fasteners to secure the cassettes.
  • Install FHU 1U 24 port patch panel. According to the video, first remove the front panel of the rack mount fiber enclosure, then mount FHU 1U adapter panel onto it. Tighten the screws to make sure it has been installed safely. At last, mount the tool on the rack.
  • Install 1U lacer panel and lacing bar. Use screws to fix the tools on the rack, placing the 1U metal lacer panel in front and put the lacer bar at the back. Then place the adapters on the lacer panel.

Finally, plug the fiber cables you need, and use zip ties to fasten the cables. A structured cabling system is completed. If installed properly, one system will last at 10 years and support 2 or 3 generations of fiber equipment.

Conclusion

1U rack mount fiber patch panel cabling solution is easy to install, which can actually manage the cables in an organized way. FS.COM offers a variety of patch panels with good quality to help your network achieve optimum performance. We are always focusing on providing products with superior performance and better services for our customers.

Single Mode Fiber Patch Panel vs Multimode Fiber Patch Panel

Cable management is the obvious factor of using fiber patch panel. For now, the amount of data that needs to be stored especially in data center has greatly increased and continues to grow, thus there are thousands of fiber connections in data centers, and technical staff needs a high-density solution which can properly deal with the different cables that vary form single mode to multimode. Thus single mode and multimode fiber patch panel are introduced to connecting the matched fiber cables. For single mode and multimode fiber optic enclosure, which one is better? Read this article and find the answer.

Importance of Using Single Mode and Multimode Fiber Patch Panel

Single mode fiber cables should be connected to the single mode fiber patch panel, while the same as the multimode one. This is necessary, because, single mode and multimode fiber cables require different transmission media and paths. Single mode cable needs special laser light transmitter while the transmitter of multimode fiber is the inexpensive LED light source. If not, like using single mode enclosure to connect the multimode fiber cables, this may lead to network failure. Therefore, using the right fiber patch panel is critical for network’s stability, maintenance and operation, as well as decreasing the total cost of ownership.

Difference Between Single Mode and Multimode Fiber Patch Panel

Obviously, the two fiber patch panels are used for different fiber cables, as stated in above content. Besides, the connector colors of both fiber patch panels are different. Single mode fiber patch panel usually takes aqua design while the multimode one is blue. Thus a quick look at the fiber patch panel may tell users which fiber cable should be connected to the security device.

Choose Single Mode or Multimode Fiber Patch Panel?

The product 48 Fibers, 24 Ports LC Duplex OS2 Single Mode Adapters, 1U High 19″ Fiber Patch Panel offered by FS.COM is designed for OS2. The connectors are blue. This fiber patch panel uses 1.5mm SPCC material with black coating and can be mounted in a 19″ network rack.

single mode fiber patch panel

Product 48 Fibers, 24 Ports LC Duplex OM3/OM4 Multimode Adapters, 1U High 19″ Fiber Patch Panel serves as standard 1U 19″ rack, ODF and cabinets. The connectors are aqua used for connecting OM3 and OM4 with a design of 1.5mm SPCC.

multimode fiber patch panel

From the above, we know the two fiber patch panel share the same material, size and connector, but for connecting different fiber cables. So choose one just based on your own need. Remember, what suits you is the best.

Conclusion

The main effect of today’s electronic equipment comes from the ability of interconnection, and this can be simplified by using a single mode fiber patch panel or multimode fiber patch panel. Both of them can help technicians improve data center environment through making changes on the patching field instead of cable routing. FS.COM is an international supplier of high quality, cost-effective fiber patch panels.

Difference Between ODF and Patch Panel

At present, fiber optic connection is becoming more vital since it can transfer data among a large number of sources. In addition, due to the increasing demands of bandwidth and storage, the number of fiber optic cable of data center has surged than ever. With the continuous development of bandwidth requirements, technicians are relying on optical fibers that can support data transmission speed at 10Gbps or even higher. Here comes the problem, how to deal with the plenty of fiber optic cables? For many years, technicians have adopted ODF or patch panel as the means of cable management. The two methods are the highly reliable and easy ways that allow simultaneous high-speed communications among servers and data storage systems via fiber optic cabling. However, what’s the difference between them? This article will help you find the answer.

Overview of Patch Panel

Commonly, patch panel is installed in racks or enclosures to organize connections between a cable and an optical communication device. It can be used in fiber and copper cabling systems and serves as a terminal for cables that laid in vertical or horizontal direction. Patch panel works as a passive networking device that can bundle multiple ports together for connecting incoming and outgoing lines.

patch panel

Overview of ODF

ODF is short for optical distribution frame, which is an important part of building a safe and flexible environment for optical network. This equipment is widely used in optic communication room, fiber optic connecting devices and it can function as the protector of optical cable termination and line transmission.

ODF

Difference Between ODF and Patch panel

Though optic distribution frame and patch panel are both the ideal solutions for cable management, there are several differences lie in the aspects such as design, types and so on.

  • Design

A typical patch panel contains four parts, enclosed chamber, adapter panels, connector adapters and splice tray. The product 1U Rack Mount HD Fiber Enclosure unloaded with a dimension of 1.73″×17.64″×18.41″ provided by FS.COM, is designed to accept up to 4 series MTP modular cassettes or fiber adapter panels within a 1U space. This product adopts the new design parallel sliding drawer, which can be pushed or pulled more stably as well as faster.

Optical distribution frame is a modular design with siding type trays. And it can be preloaded with different optical adapters and pigtails. The size of the indoor equipment could be very big or small just like patch panel boxes. FS.COM 19″ ODF with a dimension of 480mm×250mm×1U can offer a flexible cabling access, expandable frame design and comprehensive cable management.

  • Types

There are fiber and copper patch panel available. Copper patch panel is suitable for shielded and unshielded copper cables such as CAT5e, CAT6 and CAT7. In addition, due to different design, patch panel can be divided into rack mount and wall mount patch panel for different uses. FS.COM provide 12 ports, 24 ports and 48 ports of 1U high fiber patch panel.

ODF is usually divided into floor mount, rack mount and wall mount ODF for users’ different choices. FS.COM offers various types of optic distribution frames, such as 1U 12 fibers type, 2U 24 fibers type, 3U 48 fibers type and 6U 96 fibers type.

Conclusion

FS.COM offers many kinds of ODF and patch panels, and all are the cost-effective solution for your application. Due to the difference between them, you should choose one based on your actual demand.

How to Connect Fiber Optic Cable to Fiber Optic Patch Panel

Fiber optic cable is usually terminated in two ways. One is using connectors that pairing two cables to set up a link, and the other way is connecting the fibers to some network equipment such as fiber optic patch panel or switch for better cable management. No matter which terminations it uses, fiber optic cable should be installed in a manner with less signal loss. However, how to connect fiber optic cables to fiber optic patch panel correctly? Today, we will talk about the steps of this process. First, let’s have a overview of patch panel.

Types of Patch Panel

Patch panel is defined as the interface between multiple optical fibers and optical equipment. It’s a termination unit that helps networking and fiber distribution from wiring closet to various terminal equipment. Patch panel are divided into two types based on different designs, the wall mount and rack mount category. Both types can house, organize, and protect fiber optic cable and connectors.

Wall mount fiber patch panel is usually fixed on indoor walls with low-profile and compact design. It has a terrace that can provide a flexible cabling system. This patch panel is a suitable device for on-site installation of pre-connected cables and connectors.

Rack mount fiber patch panel is an indoor network equipment which is designed for standard 19 inch rack mounting. It’s available in 1U, 2U and 4U size due to different connection demands. This type can accommodate all kinds of fiber adapter ports like SC, LC, ST, FC and so on.

Structure of Fiber Optic Patch Panel

A typical fiber enclosure consists of four elements with different uses. They are enclosed chamber for installing adapter panels for holding, connector adapters for mating and splice tray for organizing. Thus, technicians can use a fiber optic patch panel to terminate fiber optic cables in a tidy and secure way. In addition, with assistance of a patch panel, they can also install, repair and upgrade networks quickly and efficiently.

Steps of Connecting Fiber Optic Cable to Fiber Optic Patch Panel

It’s important to make a right connection between cables and fiber optic patch panel so that the device can run well. Following the steps, you can do it.

  • A fiber optic patch panel should be prepared first and make sure this work will be done on a clean and level work surface. Patch panel is supplied empty, so the adapters should be inserted into the mounting plate. Then fix the mounting plate in position.
  • Prepare cables based on standard termination procedures and ensure there is enough surplus cable to work with. Connect the cable by fixing the gland and roll the excess fiber onto the spool. After that, remove the protection cap and insert into position in the adapter. Once the cables are all attached, it’s better to use a zip tie to secure the cables in a bundle.
  • Label each jack location on the fiber optic patch panel so as to distinguish the cables. Finally, mount the patch panel in a rack or cabinet.

optical fibers in patch panel

Conclusion

Fiber optic patch panel is a cost-effective way for cable management. Connecting fiber optic cable to patch panel is easy and can actually optimize the network work. So why not have a try?

LC Fiber Patch Panel vs SC Fiber Patch Panel

Any enterprise no matter how its giant scales and gigantic actual strength, it’s almost always smart to install a fiber patch panel in its information technology center. Fiber patch panel, serves as a network’s central location, is often used for connecting and disconnecting electronic devices. Patch panel can handle both copper and fiber networks, for every cable has to go into the central location through the patch panel connector. Having all cables connected to the patch panel can contribute to making cables in an organized and neat way instead of becoming tangled and messy. Based on different port connections, fiber patch panel is usually divided into LC fiber patch panel, SC fiber patch panel, ST fiber patch panel, MTP fiber patch panel and so on. LC and SC types are the most commonly used.

LC Fiber Patch Panel

LC fiber patch panel uses a LC connector which belongs to small form factor(SFF) connector. The name LC comes from its inventor Lucent Technologies, an American multinational telecommunications equipment company. LC fiber patch panel adopts a design of 1.25mm zirconia ferrule that utilizes a retaining tab mechanism. And the LC connector usually uses the duplex configuration with a plastic clip. FS.COM provides 1U high 19″ fiber patch panel with 24 ports and 48 ports. They are designed for connecting different fiber cabling. For example, the product 48 fibers, 24 ports LC duplex OS2 single mode adapters, 1U high 19″ fiber patch panel is designed for backbone-to-backbone and backbone-to-horizontal single fiber cabling.

LC fiber patch panel

SC Fiber Patch Panel

SC fiber patch panel takes the SC connector, which is a snap-in connector. SC connector is developed by NTT, a Japanese telecommunications company, which is widely used for its excellent performance. SC fiber patch panel uses a round 2.5mm ferrule to connect a single fiber. It’s also available in a duplex configuration. It is designed for gigabit ethernet networking and standardized in TIA-568-A. SC fiber patch panel is an ideal choice for data and telecommunication applications. Compared with the LC ones, type of SC fiber patch panel only can accommodate 24 ports. The product 24 fibers, 24 ports SC simplex OS2 single mode adapters, 1U high 19″ fiber patch panel, manufactured by FS.COM, is often used for connecting OS2, OM3 and OM4.

SC fiber patch panel

LC Fiber Patch Panel vs SC Fiber Patch Panel

The two types are developed at different times for different purposes. From the above introduction, the differences between LC and SC fiber patch panel are clear. LC product can be made in 24 or 48 ports while the SC only have 24 ports in 1RU size.
Available in different designs and ports, the two types of patch panels can be customized to fit users’ network’s unique needs. They are designed for achieving data transmission and serve as standard 1U 19” rack. LC and SC fiber patch panel can offer a convenient and flexible routing option for technicians or network engineers. They are both the ideal equipment for better cable management.

Conclusion

LC fiber optic patch panel and SC fiber patch panel are the integrated unit for fiber management. When buying a fiber patch panel, there are many options for one’s choice. So choosing the suitable one for your specific project and need. Regardless of which type is chosen, one thing is for certain that any network can not run well without a properly deployed fiber patch panel.

Fiber Patch Panel Color Code

Data center is regarded as the heart of a company’s information, for the customer’s information, staff’s information and even the research information are stored here. When it gets into trouble, so does the business. Cable management is one of the issues that may affect the data center operation. While managing the cabling in data center, fiber patch panel color code is certainly included.

Overview of Color Code System

Color code is defined as a system that uses various kinds of colors to tell people something. The earliest application of color code is using flags for long distance communication such as flag semaphore communication. As our society and technology advanced, this method has been widely used in many fields, chemistry, telecommunication, and even the military. It became convenient to use different colors as signals for telling apart the confused or similar things. For example, the fiber cables in electronic installations. Color coding can help users easily distinguish whether the fiber optic cables is single mode cables or multimode ones.

However, different countries may use different color code standards. In Sweden, they introduced the S12 color code for micro cables and nano cables while Finland developed the color code called FIN2012. Fortunately, there is a global recognized standard named TIA/EIA-598 color codes.

Introduction of TIA/EIA-598 Color Codes Standard

The standard is developed by Telecommunications Industry Association.  It rules identification schemes for fiber optic cables, fiber units and other fiber equipment. Fiber optic cable is split into several strands. They are the single fibers in a large cabling. And in this way, there will be 24 individual strands. After the process, the strands are usually divided into 12 tubes. Each tube containing 12 strands is given a color. In telecommunication industry, all fibers should use recommended method based on the widely acknowledged standard for their individual details and unique color code.

patch panel color code fiber

Benefit of Using Color Code

Better cable management is the best benefit of fiber patch panel color code. In data center, there are always brunches of cables and facilities. When the configuration of network or cabling needs to be changed for introducing new or more devices, the technicians have to spend large amount of time to deal with the chaotic cables. But now, with the help of fiber patch panel color code, just at a glance, the technicians can easily and quickly tell apart which cable should be unplugged or connected. It’s not only a perfect way to increase efficiency for technology workers who are responsible for installing, troubleshooting and maintaining the network, but also an effective mean of saving staff’s time so that they may go home on time.

Conclusion

Fiber patch panel color code simplifies network management by providing a visual identification of every cable. This cost-effective and easy-to-use method can help users route cables in an easier and more accurate way, reducing network errors and making maintenance easier. FS.COM always remains focused on researching and developing ways for a better network.

2x 24-Port Patch Panels or 1x 48-Port Patch Panel?

Patch panel is a passive networking device that bundles multiple ports together. It is a simple and organized solution frequently used in connecting different computers, telecommunications devices, and external hardware to others. Though wireless internet connections is becoming more popular, the use of a patch panel can actually optimize the internet speed especially in data center. Using a patch panel to arrange the circuit, users just need to plug or unplug the proper patch cords. According to the numbers of ports, patch panels can be divided into 12-port patch panel, 24-port patch panel and 48-port patch panel. They are designed in accordance with specific cable type, such as Cat5e, Cat6, Cat6a and Cat7 cables.

What Are Patch Panel Ports?

The port, as a part of patch panel, is the connection point that allows data to enter or leave the panel. Each port is connected via an ethernet or a fiber cable, then sends signal to an outgoing port location. On market, most patch panels are equipped with 24 ports or 48 ports. Selection of different patch panels should be based on one’s actual need. In addition, the port number is limited by the room for placing but not other factors. For example, the requirement of port number must be confirmed when someone designs a LAN network, so as to use the suitable panel size.

24-Port Patch Panel

FS.COM produced the product high quality 24 Ports Cat6 Shielded feed-through patch panel. It is made for optimum performance with black color and materials of SPCC+ABS plastics. The design of high density 19-inch 1RU panel can make it convenient for being mounted in any standard 19-inch rack or cabinet, accommodates top, bottom or side cable entry. Viewed in another aspect, the high density format also can save valuable space in the rack. Here is a video you can see 24-port patch panel clearly.

48-Port Patch Panel

The 48 ports blank keystone/multimedia patch panel, manufactured by FS.COM, is made of SPCC CRS material with advantages of molding in one, sturdy and durable. The design of 48 ports can accommodate all keystone jacks, including RJ45 Ethernet, HDMI audio/video, voice and USB applications. In addition, the high density 19in wide, 1U High, panel design will save valuable space in the rack.

48 port panels

2x 24-Port Patch Panels or 1x 48-Port Patch Panel?

Both 24-port patch panels and 48-port patch panel can serve ethernet networks, fast or gigabit Ethernet networks. However, due to their individual designs and materials, the price varies. This is a big factor when people buy patch panels. At FS.COM, the price discrepancy between 24-port patch panel and 48-port is slight. As a result, buying two 24-port patch panels is definitely more expensive than buying one 48-port product. Besides, the space for installation should be another consideration. Thus, considered in these two ways, chose the 48-port patch panel is better. And we must realize that network is always developing, so why not staying up to date and ahead of the curve by utilizing the benefits of 48-port patch panel rather than trying to keep up with the pace.

Conclusion

The two types patch panels are the cost-effective and easy-to-use cabling solution for modern data center. Choose 2x 24-port patch panels or 1x 48 port should based on your own need. FS.COM is your source for high quality patch panels covering different ports including 12-port, 24-port, and 48-port options.

Single Mode Fiber Distance

Fiber optic cable is the essential media in telecommunication system for transmitting information. According to different categories, while depending on fiber connectors, patch cable can be considered as LC fiber, FC fiber, SC fiber, ST fiber and so on, it is well known that fiber optic cable can be divided into single mode fiber and multimode fiber based on transmission paths. Today, we will learn more about the single mode fiber distance.

Single Mode Fiber Overview

Single mode fiber derives its name from the fact that it only allows one mode of light to pass through their core at a time. Commonly, single mode fiber is designed with a narrow core diameter of 8 to 10 micrometers, which is much smaller than multimode fiber of 50 or 62.5 micrometers.

Before we continue, we need to be clear that due to different mode of propagation, there is modal dispersion during the signal spreading. And transmission distance is greatly influenced by the dispersion. Luckily, because of the allowance of just one mode of light, single mode fiber have the ability to transmitting data for miles without losing too much data. Thus it can readily carry information for a longer distance than the light used in the multimode fiber.

single mode fiber

OS1 vs OS2

OS1 and OS2 are the two types of single mode fiber, here the term OS refers to optical single mode fiber. Both of them are suitable for Gigabit applications and have the same jacket color.

OS1 cable is indoor tight buffered fiber that is compliant with ITU-T G.652A or ITU-T G.652B standards. The attenuation of this type is 1dB per kilometer with a top transmission distance of 2 km at 10 Gigabit Ethernet. It works between 1310 nm and 1550 nm.

OS2 cable is outdoor loose tube fiber optic cable that comply with ITU-T G.652C and ITU-T G.652D specifications. It has an attenuation of 0.4 dB between 1310 nm and 1550 nm, with a maximum transmission distance of 10 km at 10Gigabit Ethernet.

Selection on Different Distances

Single mode fiber provides a greater transmission distance. When choosing the right fiber cable, the most crucial thing that must be taken into consideration is how far the cable could support. In addition, the transmission distance is also related to the optics that users apply in the equipment.

Technology Bandwidth Wavelength Distance
1000BASE-LX 1000Mbps 1310nm 10km
10GBASE-LR 10Gbps 1310nm 10km
40GBASE-ER4 40Gbps 1310nm 40km
40GBASE-LR4 40Gbps 1310nm 10km

According to the above form, we can clearly see that transmission distance varies greatly. At different transmission rate, the distance changes. Distance of single mode fiber can reach 40km at the speed of 40gigabit Ethernet, and it will be 10km with the speed of 10gigabit Ethernet. Thus, try to buy fiber cable of suitable length for your project based on your network speed and some other actual situations. Thus, try to buy fiber cable of suitable length for your project based on your network speed and some other actual situations.

Conclusion

Transmission distance of single mode fiber is an important factor when people set up a network especially in data center that requires data to deliver over long distances. FS.COM provides a number set of OS1 fiber, OS2 fiber, LC fiber, SC fiber and so on. The products have passed many quality system verification such as CE, FCC. Come and choose your favored cables at FS.COM.

PDU vs Power Strip: What Is the Difference?

Power Distribution Unit (PDU) is a reliable and cost-effective device to deliver power from a UPS system, generator, or utility source to multiple equipment by a single input with multiple output outlets. Rack mount power strip is the most basic PDU. They both supply power to the cabinet. But they have some differences. What’s the differences of upgraded PDU vs power strip? Continue to read this article.

What Is PDU

A PDU is a device fitted with multiple outlets. A PDU delivers AC power from power source to severs. PDU can be installed into a big cabinet with a power cord to transmit electric power to the computers and networking equipment located within a data center. Power cord can power a network device or connect to the PDU and computer in a data rack or network wiring closet. And C13 power cord is the best choice for PDU. In general, PDU is developing all the time. In the beginning, PDU is a simply and cheap rack mount power strip and then become larger floor mount PDUs with multiple functions.                                           

Basic Introduction of Power Strip

Rack mount power strip is an electronic device that makes it possible for people to charge multiple electronic device at the same time. Power strip which we can also call it power bar or power board is a device with a block of charging stations. Power strip is often connected with the end of a flexible cable(a mains pug) and then you can plug it into the wall or other place. It has a long power cord that can be used anywhere. It is extremely convenient.

power strip

The Difference Between PDU and Power Strip

Application area

PDU can be installed in equipment racks which keep power within reach of rack mounted devices like severs, switches, routers, or cooling fans. The installation of PDU is more flexible and convenient which can be suitable for customer who is very strict about it. And PDUs are often used in data center, network closets and industrial environments. In addition, PDU can be for in-depth power management and monitoring. Power strip are widely used both at home and office for audio, video, computer system, appliances, lights, business and other appliances.

Electricity Consumption

Compared with power strip, PDU is designed more reasonable. It has more strict quality and standard. PDU can work over a long time without any problem. If you use PDU for a long time, you never worry about heat.

Safety

PDU has fundamentally eliminated the potential safety problems such as frequent power failure, burnout and fire caused by poor contact and low load. While a power strip fails to contribute functions what PDU can.

Conclusion

From this article, we know the basic knowledge about the PDU and rack mount power strip. Each kind of PDU can help data centers to improve monitoring and reduce operation costs. To choose basic PDU or other types of PDU, it totally depends on your own needs. If you want to purchase PDU, you can visit FS.COM.