Category Archives: Fiber Optic Cables

How FS 400G MTP/MPO Cables Enable Efficient Connectivity

400G

The demand for 400G transmission rates by major data centers and telecom carrier continues to grow and cabling solutions are constantly being updated. In order to achieve 400G data rates and save cabling costs, breakthroughs, higher connection density, and simplified network design approaches must be considered, so 400G MTP/MPO cables are becoming more and more common. FS offers MTP/MPO cabling solutions to meet the needs of high-performance 400G networks. This article will describe specific cabling application scenarios.

A Glance at FS 400G MTP/MPO Cables and Transceivers

MTP/MPO cables with multi-core connector are used for optical transceiver connection. There are 4 different types of application scenarios for 400G MTP/MPO cables.

Common MTP/MPO patch cables include 8-fiber, 12-core, and 16-core. 8-core or 12-core MTP/MPO single-mode fiber patch cable is usually used to complete the direct connection of two 400G-DR4 optical transceivers. 16-core MTP/MPO fiber patch cable can be used to connect 400G-SR8 optical transceivers to 200G QSFP56 SR4 optical transceivers, and can also be used to connect 400G-8x50G to 400G-4x100G transceivers. The 8-core MTP to 4-core LC duplex fiber patch cable is used to connect the 400G-DR4 optical transceiver with a 100G-DR optical transceiver.

SR8-vs-DR4-vs-DR8.jpg

Figure 1: SR8-vs-DR4-vs-DR8

FS 400G MTP/MPO Cabling Solutions for Typical 400G Network Applications

As the network upgrades and data centers migrate to 400G rates, how to transition from existing 50G/100G/200G devices to 400G, here are FS MTP/MPO cabling solutions.

400G-400G Direct Connection

500m span with 8-fiber/12-fiber MTP/MPO cable

400G short and medium distance direct connection usually consists of 8-core/12-core MTP patch cable with 400G-DR4 OSFP/QSFP-DD modules. The term “DR4″—”DR” stands for 500m reach using single-mode fiber and “4” implies there are 4 x 100 Gbps optical channels. Since one optical channel requires two fibers, an 8-fiber or a 12-core MTP/MPO cable can be used for the 400G-DR4 module to achieve direct connection. In the 8-fiber MTP cabling, the fiber utilization is 100%, while in the 12-core MTP cabling, four fibers remain unused. Take 400G QSFP-DD module as an example, the following picture is presenting the MTP cabling for 400G DR4 direct connection.

400G-400G Direct Connection Scenario 1.jpg

Figure 2: 400G-400G Direct Connection Scenario 1

PRODUCTSDESCRIPTION
400G DR4 QSFP-DDGeneric Compatible 400G DR4 QSFP-DD PAM4 1310nm 500m DOM Transceiver Module
MTP®-12 (Female) 12 Fibers OS2 Single ModeOS2 Single Mode Elite Trunk Cable, 12 Fibers, Type B, Plenum (OFNP)

100m span with 16-fiber MTP/MPO cable

The 400G-SR8 transceivers require the use of a 16-core MTP cable. The term “SR8” – “SR” stands for a distance of 100 meters using multimode fiber, and “8” implies there exist 8 optical channels with each operating at 50Gbps. In this direct connection, the 16-core MTP cable has 100% fiber utilization. The primary adopters of these 400G-SR8 fiber transceivers are expected to be certain hyperscale cloud service providers in North America and China.

400G-400G Direct Connection Scenario 2.jpg

Figure 3: 400G-400G Direct Connection Scenario 2

PRODUCTSDESCRIPTION
400GBASE-SR8 QSFP-DDGeneric Compatible 400GBASE-SR8 QSFP-DD PAM4 850nm 100m DOM Transceiver Module
MTP®-16 APC (Female) OM4 CableOM4 Multimode Elite Trunk Cable, 16 Fibers, Plenum (OFNP), Magenta, 850/1300nm

400G-2x200G Direct Connection

100m span with 16-fiber MTP conversion cable

In the backbone and some more complex metropolitan area networks, the dual-carrier technology (2x200G) will be adopted to compress the channel spacing compared to a single-carrier 400G technology. Extending the transmission distance and improving the spectral efficiency, 400G-2x200G direct connection can help to deploy 400G backbone networks with minimum bandwidth resources.

In this case, 16-core MTP conversion cables terminated with MTP/MPO connectors on both ends are needed. With this type of cable, one 400G OFSP/QSFP-DD module and two 200G QSFP56 modules can be directly connected.

400G-2x200G Direct Connection Scenario.jpg

Figure 4: 400G-2x200G Direct Connection Scenario 3

PRODUCTSDESCRIPTION
400GBASE-SR8 QSFP-DDGeneric Compatible 400GBASE-SR8 QSFP-DD PAM4 850nm 100m DOM Transceiver Module
200GBASE-SR4 QSFP56FS for Mellanox MMA1T00-VS Compatible 200GBASE-SR4 QSFP56 850nm 100m DOM Transceiver Module
MTP®-16 APC (Female) OM4 CableOM4 Multimode Elite Trunk Cable, 16 Fibers, Plenum (OFNP), Magenta, 850/1300nm

400G-4x100G Direct Connection

500m span with 8-fiber MTP/MPO trunk cable and 4-LC duplex patch cable

In the 400G to 4x100G migration scenario, an 8-core MTP-LC cassette that packaged in the fiber rackmount enclosure is adopted to realize the transmission from MTP to LC, and then an 8-core MTP/MPO trunk and 4-LC duplex patch cables are used to connect at both ports.

The 400G-4x100G architecture uses four optical modules with 100Gbps wavelengths. However, the current 100G technology is based on a 4x25G design and unable to scale to 400G. 100Gbps per channel can be achieved using PAM4 technology and then aggregated to achieve an overall 400Gbps speed with 4x100G. MTP/MPO cables allow splitting 400G bandwidth into multiple 100G or 40G data streams.

400G-4x100G Direct Connection Scenario.jpg

Figure 5: 400G-4x100G Direct Connection Scenario 4

PRODUCTSDESCRIPTION
400G DR4 QSFP-DDGeneric Compatible 400G DR4 QSFP-DD PAM4 1310nm 500m DOM Transceiver Module
100GBASE-DR QSFP28 Single LambdaGeneric Compatible 100GBASE-DR QSFP28 Single Lambda 1310nm 500m DOM Transceiver Module
MTP® Female to 4 LC UPC Duplex 8 FibersMTP Type B Plenum (OFNP) OS2 9/125 Single Mode Elite Breakout Cable 1310/1550nm
FHD MTP®-8 Cassette to 4x LC Duplex (Blue)8 Fibers OS2 Single Mode, Universal Polarity, MTP® to 4x LC Duplex (Blue), 0.35dB max
Customized 8-144 Fibers MTP®-12OS2 Single Mode Elite Breakout Cable
FHD 144 Fibers (LC) EnclosureFHD High Density 1U Rack Mount Enclosure Unloaded, Tool-less Removable Top Cover, Holds up to 4x FHD Cassettes or Panels

400G-8x50G Direct Connection

500m span with 16-fiber MTP conversion cable and LC duplex patch cable

The rapid growth of 400G has contributed in part to the less popular 50G market, and MTP/MPO cables provide the technology to scale 50GbE to accommodate 400G (8x50G) network. For this scenario example, the MTP cassette is in the middle to connect the 16-core MTP conversion cable and the LC duplex patch cords together to realize the 400G-8x50G direct connection. Eight 50G lanes can support the optical link of 40Gbps aggregation via PAN modulation.

400G-8x50G Direct Connection Scenario.jpg

Figure 6: 400G-8x50G Direct Connection Scenario 5

PRODUCTSDESCRIPTION
400G DR4 QSFP-DDGeneric Compatible 400G DR4 QSFP-DD PAM4 1310nm 500m DOM Transceiver Module
MTP®-16 APC (Female) OM4 CableOM4 Multimode Elite Trunk Cable, 16 Fibers, Plenum (OFNP), Magenta, 850/1300nm
FHD MTP®-24 Cassette to 12x LC Duplex (Aqua)24 Fibers OM4 Multimode, Type A, MTP® to 12x LC Duplex (Aqua), 0.35dB max
MTP®-16 APC (Female) to 8 LC UPC Duplex CableOM4 Multimode Elite Breakout Cable, 16 Fibers, Plenum (OFNP), Magenta,850/1300nm
FHD 144 Fibers (LC) EnclosureFHD High Density 1U Rack Mount Enclosure Unloaded, Tool-less Removable Top Cover, Holds up to 4x FHD Cassettes or Panels

Scaling to FS 400G MTP/MPO Cabling System for 400G Networks

400G is increasingly becoming ubiquitous in many high-performance and high-density networking environments. 400G MTP/MPO cables have been widely used as cabling solutions for 400G network transmission rates due to their unique cabling simplicity and cost reduction benefits. FS offers a wide range of related 400G MTP/MPO cabling products and solutions to smoothly achieve high-speed data transmission.

Original Source: How FS 400G MTP/MPO Cables Enable Efficient Connectivity

Comparing Single Mode and Multimode Fibers From Distance, Speed, and Wavelength

An optical fiber is a way to transmit light between the two ends of the fiber and is widely used in fiber optic cable communications. In general, there are two kinds of optical fibers: single mode fiber and multimode fiber. As the increasing integration of computers and mobile devices, the demand for optical fiber also grows. It’s important to make the right choice between single mode fiber and multimode fiber for your network. Therefore, this article will compare single mode and multimode fibers from distance, speed, and wavelength to help you to select the one suits you best.

alt Single Mode and Multimode Fibers

What Is Single mode Fiber?

A single mode fiber typically has a core size of less than 10 µm, which allows only one code or ray of light transmission wavelength up to 1310nm or 1550nm. When light passes through the core of a single mode fiber, the small size of the core reduces light reflections. Therefore it lowers fiber attenuation and increases the distance that signals can travel and preserve signal quality. Whether single mode fiber operates at 100 Mbit/s or 1 Gbit/s data rates, the transmission distance can reach to at least 5km. Thus it’s commonly used for long distance and higher bandwidth applications.

What Is Multimode Fiber?

A multimode fiber usually has a larger core size around 62.5 µm or 50 µm, which enables multiple light modes to be propagated at a given time. The core’s larger size provides more light reflections, higher dispersion, higher attenuation rate and allows more data to travel across at the cost of reducing signal quality. The maximum transmission distance of multimode fiber is about 550m at a speed of 10Git/s. It can transmit farther at lower data rates. Since signal quality drops as distance increases, multimode fiber is generally used for short-distance communications across local area networks (LANs).

Comparison of Single Mode and Multimode Fibers

In the previous section, we introduced the definitions of single mode and multimode fibers. Since single mode and multimode fibers are widely used in various fields. Therefore we will compare them from distance, speed, and wavelength so that you can understand them in depth and make the right choice for your solution.

Fiber Distance

Single mode fiber has a much longer maximum distance than multimode fiber. Single mode fiber can go as far as 10km, 40km, 80km, and even farther. While multimode fiber generally can go as far as 2km. Thus single mode fiber is ideal for long-haul application, while multimode fiber is a good choice for short-haul application. But to remember that the price rises as the distance grows.

Fiber Speed

Single mode fiber and multimode fiber are capable of achieving the same speed from 1Gbps to 100Gbps. Since the transmission radius of single mode fiber is smaller than that of multimode fiber, a single mode fiber can only be propagated by one beam during signal transmission. So that the scattering phenomenon will not be caused, and a long distance can be transmitted without deformation. Therefore, single mode fiber can support distance value from 5km to 120km, whereas multimode fiber can support distance from 100m to 550m.

Fiber Wavelength

Single mode fiber used in telecommunications typically operates at a wavelength of 1310nm or 1550nm. While the large core size of multimode fiber simplifies connections and allows lower-cost electronics to operate, multimode fiber can operate at 850nm and 1310nm wavelength.

Conclusion

In a data center, single mode fiber is more suitable for a large enterprise with longer distance requirement, while multimode fiber is an optimal choice for companies within walking distance. Your choice depends on the needs and considerations of your network. In addition to the fibers mentioned above, FS.COM also provides a series of single mode and multimode fiber patch cords as a cost-effective alternative to satisfy your needs such as LC/SC/FC/ST fiber patch cables, MTP/MPO fiber cables, ultra-high density cables. Welcome to visit FS.COM to find the most satisfying fibers.

Related Articles:
A Glance At Cisco Single Mode SFP Specification
Single Mode vs Multimode Fiber: What’s the Difference?

ABCs of FS FHD Series MPO/MTP Cassettes

FS FHD series MPO/MTP cassettes have become a favorable choice for today’s high speed networks and cloud computing in data centers. They enable high bandwidth, high port density, security monitoring, easy cable management and future data rates migration. With the advent of 40/100G network, MPO/MTP cassettes play a more and more important role in fiber optic network. Their importance needs no further explanation. Today, we will unveil the product and learn some ABCs of FS FHD series MPO/MTP cassettes.

What Are FHD Series MPO/MTP Cassettes?

FS MPO/MTP fiber cassettes are available with FHX series and FHD series, which is used for our FHX and FHD fiber optic patch panel respectively. FHD series MPO/MTP cassettes are pre-terminated and pre-tested enclosed units. MTP modular cassettes serve to transmit small diameter ribbon cables terminated with MPO connectors to LC or SC interface used on the transceiver terminal equipment. The fan-outs incorporate LC, SC connectors insert into adapters on the front side of the cassette and MPO connectors plugged into MPO adapters mounted at the rear of the cassette. One or more MPO fan-out assemblies can be installed inside the cassette to connect up to 24 fibers. Alignment pins are pre-installed in the MPO connector located inside the cassette. These pins precisely align the mating fibers in the MPO connectors at either end of the array cables that plug into the cassettes. MPO/MTP cassettes can be deployed quickly and easily in high-density applications, leveraging rack space and fiber enclosure design flexibility. The cassette is interconnected with a high-density fiber optic cable assembly for quick connection to remote or data center applications.

altABCs of FS FHD Series MPO/MTP Cassettes

Types of FHD MPO/MTP Cassettes

FS FHD MPO/MTP cassettes are available in different types. To sum it up, there are about 23 diverse products, which can be generally classified from three aspects: fiber count, connector type, polarity type.

Fiber Count

As a pre-terminated fiber product, FS FHD MPO/MTP cassettes are equipped with 8 fibers, 12 fibers or 24 fibers.

Base-8 MTP Fiber Cassette

Base-8 MTP fiber cassette is designed to upgrade existing LC links to SR4 parallel optics without wasting any of the fibers inside the cable. With respect to the Base-8 connectivity, LC port layout adhere to 1-12, 2-11, 3-10, 4-9 array connections. This Base-8 MTP fiber cassette is ideal to deploy a Base-8 connectivity solution for use in main, horizontal and equipment distribution areas.

altABCs of FS FHD Series MPO/MTP Cassettes

Base-12 MTP Fiber Cassette

Base-12 MTP fiber cassette has 12-fiber MTP adapter on the rear of the units and duplex LC adapters on the front patch field. With respect to the Base-12 connectivity, LC port layout adhere to 1-2, 3-4, 5-6, 7-8 array connections. It’s designed to interconnect with high-density fiber cable assemblies for quick connection of remote or data center applications.

altABCs of FS FHD Series MPO/MTP Cassettes

Base-24 MTP Fiber Cassette

Base-24 MTP fiber cassette is similar to Base-12 MTP fiber cassette, except it has 24-fiber MTP adapter on the rear of the units and duplex LC adapters on the front patch field. It has the same array connections from 1-2, 3-4 to 21-22, 23-24. And it’s also designed to interconnect with high-density fiber cable assemblies for quick connection of remote or data center applications.

altABCs of FS FHD Series MPO/MTP Cassettes

Connector Type

MPO/MTP cassettes have several different front connectors and rear connectors. There are two kinds of front connectors, such as LC/SC duplex with UPC polished multimode front connector and LC/SC duplex with UPC/APC polished single mode front connector. And also two rear connectors, such as MTP/MPO adapter(s) with male ferrules (pins) and UPC polished multimode rear connector and MTP/MPO adapter(s) with male ferrules (pins) and APC polished single mode rear connector.

Polarity Type

Considering polarity type, there are four types of FHD MPO/MTP cassettes: type A, type AF, type B1 and type B2. Different types of MPO/MTP cassettes transmit different signals and connect with different receiver equipment.

Base-8 Series MPO/MTP Cassettes

The Base-8 series MPO/MTP cassette has no polarity. The specific fiber sequence structure is shown below.

altABCs of FS FHD Series MPO/MTP Cassettes

Base-12 Series MPO/MTP Cassettes

There are four different 12/24 Fibers MTP/MPO cassette modules: Type A, AF(Pair Flipped), B1 and B2.

altABCs of FS FHD Series MPO/MTP Cassettes

Base-24 Series MPO/MTP Cassettes

There are two different 24 Fibers MTP/MPO cassette modules: Type A, and AF(Pair Flipped).

altABCs of FS FHD Series MPO/MTP Cassettes

FHD MPO/MTP Cassettes Installation Steps

When we’re trying to install a FS FHD MPO/MTP cassette, we can follow the installation steps below to complete the equipment.

  1. Insert the cassette through the mounting bracket and secure it by locking the plastic rivets.
  2. Feed one end of the cassette patch cord through a desired grommet location and connect it to the rear port of the cassette.
  3. Route and connect the free end of the cassette patch cord to the appropriate equipment.

For more installation methods, please check out the video below.

Conclusion

FHD series MPO/MTP cassettes are used for inter connector or cross connector connectivity when the distance between two devices is too long. They’re dominant in high-density data centers for their reliable interface, optimized performance and minimized server rack space. FS.COM provides various popular cassettes, such as 1xMTP (8-Fiber) to 4xLC duplex fiber cassettes, 3xMTP (8-Fiber) to 6xLC quad cassettes, 1xMTP (12-Fiber) to 6xLC duplex cassettes, 2xMTP (12-Fiber) to 12xLC duplex cassettes and 1xMTP (24-Fiber) to 12xLC duplex cassettes. I’m sure you can find one to satisfy your needs.

Related Articles:
MPO/MTP Fiber Cassette Module Solution
Differences of MTP Cassette Types

Review on Fiber Cable Connectors

Fiber cable connectors are designed to provide perfect alignment of the microscopic glass fibers that were used in fiber cables to transmit data. These kinds of connections must be highly accurate in order to facilitate high speed fiber optic networks. This article helps to review some common fiber cable connector types available on the market today.

What Is Fiber Cable Connector?

Fiber cable connector, also named fiber optic connector or optical fiber connector, is a hardware installed on fiber cable ends. It provides cable attachment to a transmitter, receiver or other cable. There are various fiber cable connectors, for which different connectors have different characteristics and functions. According to statistics, about 100 different types of fiber cable connectors have been introduced to the market.

Fiber Cable Connector Constructions

The most popular used ones are ST, SC, FC and LC style connectors, which vary differently from characteristics, applications and performances. But all the connectors have three major components: the ferrule, the connector body, and the coupling mechanism. Among those, the ferrule is used for protecting and aligning the stripped fiber end. The connector body holds the ferrule and attaches to the jacket and strengthens fiber cable. The coupling mechanism is a part of the connector body that keeps the connector in place when connected to other devices.

Common Fiber Cable Connectors and Their Differences

ST Connector

ST connector was developed by AT&T. It’s a high-performance fiber optic connector with cylindrical ceramic ferrules and bayonet locking features. Most ferrules are ceramic, but some are metal or plastic. ST connector is constructed with a metal housing and is nickel-plated, can be inserted into and removed from a fiber optic cable both quickly and easily. It’s commonly used in network environments such as campuses, corporate networks, industrial and military applications.

altST Connector of Fiber Cable Connectors

SC Connector

SC connector is a snap-in connector with a round 2.5mm ferrule used to hold a single mode fiber (SMF). It sometimes refers to “square connector” because of its “square shaped” connector body. It’s intended for Gigabit Ethernet networking with features of low price and excellent performance. SC connector is ideal for data communication and telecommunications applications, and still popular over the years.

altSC Connector of Fiber Cable Connectors

FC Connector

FC Connector is the first optical fiber connector to use a certain ferrule. It utilizes a round screw-type fitment made from nickel-plated or stainless steel. The end face relies on an alignment key for correct insertion and is then tightened into the adaptor/jack using a threaded collet. It’s commonly used in data communication, telecommunications, measurement equipment, and single-mode lasers. SC and LC connector deliver similar performance to FC connector but both of them have less expensive components, thus FC connector with screw-on collet performs effectively in high-vibration environments.

altFC Connector of Fiber Cable Connectors

LC Connector

LC connector is featured with a ferrule of 1.25mm, which makes it perfect for high density cabling. It’s available in simplex and duplex versions. It has half the footprint of the SC connector, thus it becomes the most popular connector in data communication and other high-density patch applications. LC connector is ubiquitous nowadays, especially for connections with SFP and SFP+ fiber transceivers.

altLC Connector of Fiber Cable Connectors

Conclusion

There are about 100 fiber cable connectors introducing to the market, but only a few represent the majority of the market. Here is a brief review on fiber cable connectors that have been the leaders of the industry. If you’d like more information on different fiber cable connectors, FS.COM has a complete fiber cable connector guide for you.

Related Articles:
Tips on Buying Fiber Optic Cables
Fiber Optic Cable Core-How Much Do You Know About It?
How Many Fiber Connector Types Do You Know?

Tips on Buying Fiber Optic Cables

Buying fiber optic cables has been a daily thing in our life. Since the field of fiber optic network is still unfamiliar to most people, not to say the detailed information about the fiber optic cable. In this article, we are going to provide some tips for you to buy fiber optic cables. Before that, let’s go over the background information of the fiber optic cable for your better understanding.

What Is the Fiber Optic Cable

The fiber optic cable refers to a kind of telecommunication cable, containing one or more glass or plastic made optic fibers, usually slightly wider than a human hair. It can carry light to transmit data. Designed for long distance transmission from hundreds of miles to thousands of miles, the fiber optic cable is an ideal choice for networking, telecommunications and storage applications in wiring closets, distribution frames, gateways, central offices and data centers.

Types of Fiber Optic Cables

According to different standards or features, there are different types of fiber optic cables. Basically, based on different transmission modes, the fiber optic cable can be grouped into two types: single mode fiber and multimode fiber.

Single Mode Fiber

The fiber optic cable for this type is a single strand of glass fiber with a diameter of 8.3 to 10 microns, which is narrower than the multimode fiber. Under such a condition, the beam of light is transmitted in a much tighter space with a higher transmission rate. Therefore, it makes the long-distance communication, sometimes as far as between continents more available.

Figure 1: Single Mode Bend Insensitive Fiber Optic Cable

Figure 1: Single Mode Bend Insensitive Fiber Optic Cable

Multimode Fiber

Compared with single mode fibers, the multimode fiber has a larger diameter (62.5µm or 50µm), allowing more space to generate and collect light. Considering about multimode fibers’ transmission performance, it is mostly used for communications over short distances no longer than 2000 m, such as within a building or in a small campus.

 Figure 2: OM1 Multimode Fiber Optic Cable

Figure 2: OM1 Multimode Fiber Optic Cable

Tips on Buying Fiber Optic Cables

After an overview of fiber optic cables, it’s time for us to learn how to buy fiber optic cables. There are some major steps offered to follow with.

Firstly, preparation. For anyone buying fiber optic cables, they need to have a full preparation. On the one hand, you need to know your network environment, such as the required transmission speed, distance etc. On the other hand, you need to have a basic understanding of the features of all kinds of optic cables. As we mentioned above, there are many types of fiber optic cables available in the market not only just based on different transmission modes, for example, according to different connectors, there are LC fiber, SC fiber, etc. Therefore, you need to know which type suits your network environment.

Next, you need to have a budget for buying optic cables in your mind. There are so many fiber optic cable suppliers in the online market, almost every supplier will offer a different fiber optic cable price. After that, you can begin your online searching. When you browse the product, you can make a comparison of the fiber optic cable price per meter among different suppliers. Besides, you have to check the suppliers’ reputation making sure their service and products are reliable.

Last, but not least. Some buyers buying fiber optic cables for their company need to consider more carefully for their complicate requirements. You had better buy your cables from suppliers who are also manufacturers, such as FS.COM, one of the top fiber optic cable manufacturers. Their service will be more mature, reliable and professional, especially for their after-sale service.

Conclusion

Buying fiber optic cable is not so difficult as you have thought. After reading this article, we believe things will be different for you.

Fiber Optic Cable Core-How Much Do You Know About It?

For anyone who wants to know fiber optic cable core, it’s a must to know the structure of a fiber optic cable. For a fiber optic cable, it consists of three basic parts: the core, the fiber optic cable core cladding, and the coating layer outside the cladding.

What Is Fiber Optic Cable Core?

A conventional fiber optic cable core is a glass or plastic made cylinder running along the fiber’s length. This part is designed for light transmission. Therefore, the larger the core, the more light that will be transmitted into the fiber. As we mentioned before, the core is surrounded by the cladding layer to provide a lower fiber optic cable core index of refraction. So more light can be transmitted into the fiber.

The structure of the fiber optic cable

Figure 1: the structure of the fiber optic cable

Fiber Optic Cable Core Types

According to different standards or features, the fiber optic cable can be grouped into different types. For example, classified by connectors, we can get LC fiber, SC fiber, etc; classified by transmission mode, we can get multimode fiber and single mode fiber. Likewise, with different features, the fiber optic cable core can also be divided into different types.

Fiber Optic Cable Core Material

According to the material, plastic and glass cores can be found. When the core is made from pure glass, the cladding is from the less pure glass. Glass type has the lowest attenuation over long distances but comes at the highest cost. As for the plastic core type, it is not as clear as glass one but is more flexible and easier to handle. Moreover, the plastic type is more affordable for us.

Fiber Optic Cable Core Size

Based on sizes, the fiber optic core can be grouped into quite a lot of types. Basically, the most common core sizes are 9 µm in diameter (single mode), 50 µm in diameter (multimode), 62.5 µm in diameter (multimode). For your better understanding, please look at Figure 2 as below. It’s a comparison of the three common sizes when they are inside the same cladding layer diameters (125 µm).

A comparison of optical fiber core diameters

Figure 2: A comparison of optical fiber core diameters

Fiber Optic Cable Core Numbers

Featured by how many cores in fiber optic cables, two kinds of cable cores can be arranged: the single core and the multicore. The single core type refers to the fiber cable that consists of a core and a cladding layer, which is the most common type in the market. However, the multicore fiber optic cable means that in the same cladding layer, there are more than one core in it. The commonly used cables are four, six, eight, twelve, twenty-four cores.

Multicore Fiber Cable

Figure 3: Multicore fiber cable

Conclusion

Based on the knowledge about fiber optic cables, we have a basic idea about its structure and functions each part has played, especially the fiber optic cable core. After knowing what the core is, we also introduce the types of the fiber optic core. Classified by different features, such as core material and size, we can get different types. Hoping after this article, you will have a much clearer vision about the fiber optic core.

Could You Tell the differences Among Cat5e, Cat6, and Cat6a

Maybe you are not quite familiar with the term “twisted pair” but you might have been accustomed to using Ethernet cables and Ethernet patch cables in your daily life. Among all the Ethernet cables, currently, Cat5e, Cat6, and Cat6a cables are the most popularly used types.

What the Ethernet Cable Is

Usually, the Ethernet patch cable is used to connect devices within a local area network (LAN), metropolitan area network (MAN), and wide area network (WAN), such as PCs, routers, and switches. In order to reduce the interference between internal wires and external wires, twisted pair (a cable twisting technology) is adopted to be the basis for all Ethernet cables. Totally, the Ethernet cable consists of seven types: Cat3, Cat5, Cat5e, Cat6, Cat6a, Cat7, and the latest Cat8. Here, “Cat” stands for their “Category,” and the number with it refers to the specifications to which the cable was manufactured. Usually, the higher number indicates its speed is faster and frequency is higher (measured in Mhz). Every type has its unique features applying in different situations. Currently, Cat3 and Cat5 Ethernet cables have been out of stage for their bad performance. You can hardly see them in our daily life. As for the most used Ethernet cables, Cat5e, Cat6, and Cat6a will be chosen by most of the users. Therefore, in this article, we will make a contrast for these three types and hope it can provide a reference for how to choose an Ethernet cable.

Cat5e Cable

The letter “e” in Cat5e represents “enhanced”, which means the Cat5e patch cable is an enhanced version of Cat5. It’s designed to support up to 1000 Mbps or Gigabit transmission speed and 100 Mhz Brandwidth. Besides, the Cat5e cable can greatly reduce the crosstalk. The crosstalk refers to unwanted signals are transferred between communication channels. In that way, contrasting with Cat5 cables, Cat5e cables share a faster speed, more steady network, and low production cost.

Figure 1: Cat5e Cable

Figure 1: Cat5e Cable

Cat6 Cable

As an improved version of Cat5e cables, the Cat6 cable speed can achieve up to 10 Gbps and the bandwidth up to 250 MHz. It’s a more tightly wound than those of their predecessor and is often outfitted with foil or braided shielding. This shielding protects the twisted pairs of wires inside the Ethernet cable, helping to prevent crosstalk and noise interference. One thing should notice is that the Cat6 cable supports higher data rates of 10Gbps. However, the transmission speed at 10Gbps is only supported over distances of 37-55 meters.

Figure 2: Cat6 Cable

Figure 2: Cat6 Cable

Cat6a Cable

The letter “a” in Cat6a means “augmented”. In contrast with Cat6 cables, Cat6a cables can support data transfer rates of up to 10Gbps at a maximum bandwidth of 500MHz over longer cable lengths (100 meters). It’s backward compatible with Cat6 and Cat5e. Similarly, the Cat6a also reduces the crosstalk among the pairs, which further reduces the delay in the cables.

Figure 3: Cat6a Cable

Figure 3: Cat6a Cable

Conclusion

Through this article, you will have a clear mind about the differences among Cat5e, Cat6, and Cat6a cables and how to choose the right one. For 10GBASE-T users, you can get more details from this article: Running 10GBASE-T Over Cat6 vs Cat6a vs Cat7 Cabling? Hope this article can make a difference in helping you out.

How Much Do You Know About Multimode Fiber Optic Cables

If the multimode fiber is mentioned, most of you may be familiar with this term. As a significant member of the large fiber optic cable family, multimode fiber optic cable also consists of many sub-branches. However, not all the people are clear about these subbranches. Therefore, in this article, we will introduce the multimode fiber optic cable and its subbranches to you.

What Are Multimode Fiber Optic Cables

In optical fiber technology, the multimode fiber is a kind of optical fiber that is designed to carry multiple light rays or modes concurrently, each at a slightly different reflection angle within the optical fiber core, typically 50 or 62.5 μm for its core diameter. Mostly, the multimode fiber is used for communications over short distances, such as within a building or on a campus for the reason that its modes tend to disperse over longer lengths (this is called modal dispersion).

Applications of Multimode Fiber

Typical multimode transmission speed and distance limits are 100 Mbit/s for distances up to 2 km (100BASE-FX), 1 Gbit/s up to 1000 m, and 10 Gbit/s up to 550 m. In addition, the equipment used for communications over multimode optical fiber is less expensive than that for single-mode optical fiber. Because of its high capacity, reliability, and cheap price, the multimode optical fiber mostly is used for backbone applications in buildings, aerospace and LAN network, storage area networks.

Types of Multimode Fiber

Identified by ISO 11801 standard, multimode fiber optic cables can be classified into the OM1, OM2, OM3, OM4, and OM5 fiber. Specified by that Standard, “OM” is abbreviated for optical multimode. These five types will be presented in the following parts.

OM1 Fiber

Wearing an orange jacket, OM1 fiber cable possess a core size of 62.5 µm, supporting 10 Gigabit Ethernet at lengths of up to 33 meters. It is most commonly used for 10/100 Megabit Ethernet applications. This type is commonly used as an LED light source.

OM2 Fiber

Just like OM1, OM2 fiber also comes with an orange jacket and uses an LED light source. But, its core size is 50 µm, supporting up to 10 Gigabit Ethernet at lengths up to 82 meters and more commonly used for 1 Gigabit Ethernet applications.

Figure 1: OM2 Fiber
OM3 Fiber

Like OM2, the OM3 fiber cable’s core size is 50 µm, but it wears an aqua jacket and is optimized for laser-based equipment. OM3 supports 10 Gigabit Ethernet at lengths up to 300 meters. Besides, OM3 is able to support 40 Gigabit and 100 Gigabit Ethernet up to 100 meters. However, 10 Gigabit Ethernet is most commonly used.

Figure 2: OM3 Fiber
OM4 Fiber

Being backward compatible with OM3 fiber, the OM4 fiber shares the same aqua jacket with it. The OM4 was developed specifically for VSCEL laser transmission and allows 10 Gig/s link distances of up to 550m compared to 300M with OM3. And it’s able to run at 40/100GB up to 150 meters utilizing an MPO connector.

Figure3: OM4 Fiber
OM5 Fiber

 

OM5 fiber, also known as WBMMF (wideband multimode fiber), is the newest type of multimode fiber, and it is backward compatible with OM4. It has the same core size as OM2, OM3, and OM4. The color of the OM5 fiber jacket was lime green. It is designed and specified to support at least four WDM channels at a minimum speed of 28Gbps per channel through the 850-953 nm window.

Figure 4: OM5 Fiber

Conclusion

Through this article, we will have a basic idea of what the multimode fiber cable is and how many types it has. In general, multimode fiber cable continues to be the most cost-effective choice for enterprise and data center applications up to the 500-600 meter range. However, since the fiber patch cable is a very large family, every kind has its own features. Before making a choice, the key point is we need to understand whether our demands match the patch cable we want to choose.

Single Mode Fiber Distance

Fiber optic cable is the essential media in telecommunication system for transmitting information. According to different categories, while depending on fiber connectors, patch cable can be considered as LC fiber, FC fiber, SC fiber, ST fiber and so on, it is well known that fiber optic cable can be divided into single mode fiber and multimode fiber based on transmission paths. Today, we will learn more about the single mode fiber distance.

Single Mode Fiber Overview

Single mode fiber derives its name from the fact that it only allows one mode of light to pass through their core at a time. Commonly, single mode fiber is designed with a narrow core diameter of 8 to 10 micrometers, which is much smaller than multimode fiber of 50 or 62.5 micrometers.

Before we continue, we need to be clear that due to different mode of propagation, there is modal dispersion during the signal spreading. And transmission distance is greatly influenced by the dispersion. Luckily, because of the allowance of just one mode of light, single mode fiber have the ability to transmitting data for miles without losing too much data. Thus it can readily carry information for a longer distance than the light used in the multimode fiber.

single mode fiber

OS1 vs OS2

OS1 and OS2 are the two types of single mode fiber, here the term OS refers to optical single mode fiber. Both of them are suitable for Gigabit applications and have the same jacket color.

OS1 cable is indoor tight buffered fiber that is compliant with ITU-T G.652A or ITU-T G.652B standards. The attenuation of this type is 1dB per kilometer with a top transmission distance of 2 km at 10 Gigabit Ethernet. It works between 1310 nm and 1550 nm.

OS2 cable is outdoor loose tube fiber optic cable that comply with ITU-T G.652C and ITU-T G.652D specifications. It has an attenuation of 0.4 dB between 1310 nm and 1550 nm, with a maximum transmission distance of 10 km at 10Gigabit Ethernet.

Selection on Different Distances

Single mode fiber provides a greater transmission distance. When choosing the right fiber cable, the most crucial thing that must be taken into consideration is how far the cable could support. In addition, the transmission distance is also related to the optics that users apply in the equipment.

Technology Bandwidth Wavelength Distance
1000BASE-LX 1000Mbps 1310nm 10km
10GBASE-LR 10Gbps 1310nm 10km
40GBASE-ER4 40Gbps 1310nm 40km
40GBASE-LR4 40Gbps 1310nm 10km

According to the above form, we can clearly see that transmission distance varies greatly. At different transmission rate, the distance changes. Distance of single mode fiber can reach 40km at the speed of 40gigabit Ethernet, and it will be 10km with the speed of 10gigabit Ethernet. Thus, try to buy fiber cable of suitable length for your project based on your network speed and some other actual situations. Thus, try to buy fiber cable of suitable length for your project based on your network speed and some other actual situations.

Conclusion

Transmission distance of single mode fiber is an important factor when people set up a network especially in data center that requires data to deliver over long distances. FS.COM provides a number set of OS1 fiber, OS2 fiber, LC fiber, SC fiber and so on. The products have passed many quality system verification such as CE, FCC. Come and choose your favored cables at FS.COM.

Armoured Cable vs. Unarmoured Cable: What’s The Difference?

With the rapid development of optical communication, more and more fiber optic cables are increasingly used in different environments. What if under harsh conditions? Then it’s crucial to ensure your cables smooth and reliable operation when transmitting data. This is where armoured cable comes into play. An armoured cable, as its name suggests, is protected against mechanical damage, whereas an unarmoured cable not being protected. What is the difference between them? And why should we choose armoured cable over unarmoured cable? You my find answer in this post.

Amoured Cable Overview

Armoured cable has an extra layer of protection to keep it from being cut or abraded. The armor layer of coax cable is a foil wrap that is ribbed like corrugated metal to allow for flexibility, around the inside and outside of that wrap is a flooding compound to keep moisture from penetrating the cable and causing an impairment. The internal structure of 4 core armoured cable consists of many layers to prevent the cable from damage. The outer jacket provides protection against rodent, abrasion and twist, which is usually made of plastic. And the armoring materials are mainly come from kevlar, steel, and aluminum foils, aiming to protect the armored cable from being stretched during installation.

the-structure-of-armored-cable

Difference Between Armoured Cable And Unarmoured Cable

Structure

Many people may think that armoured cable just has metal protection. To be precise, the armoring material doesn’t have to be metal, it can be fiber yarn, glass yarn, polyethylene etc. The only thing that makes armored cable different from unarmored cable is that the former has an additional outer protective layer for optical cable. The 4 core armoured cable tends to be more expensive than unarmored cable, while the armoured cable with steel strip and aluminum is much cheaper than armored fiber cable with Kevlar, which is usually used for special occasions.

Difference-between-Armored-Non-Armored-Cable

Application

Armoured cable is installed in locations exposed to mechanical damage, such as on the outsides of walls, as an alternative to conduit. Armoured cable usually has a small metal ribbon to ensure electrical continuity of the safety ground. (You must run a separate ground wire in flexible conduit too; you can’t depend on the continuity of the conduit.) In HT & LT distribution, 4 core armoured cable is preferred. Inside walls and in other protected locations, less expensive unarmored electrical cable can be installed instead. Unarmoured cable is mainly used for control systems.

Why Should Use Armoured Cable Over Unarmoured Cable?

There are a couple of reasons that armoured cable should be used. The biggest reason is about strength, because armored cable was used more extensively in past decades when cable was simply directly buried under dirt and not used through a conduit. Nowadays most local municipalities require conduits to be trenched in prior to installing network components, thus eliminating the need for unarmored cable in most applications. Secondly, rodents or animals can and will chew through cables so the armor protects the cables from damage by animal or shoveling in direct bury applications. Thirdly, the most uncommon reason it would be used is in an RF environment that has an off air RF signal that is powerful enough to interfere with your network, the armor when grounded can provide another layer of RF protection.

Conclusion

Armoured cable can be regarded as a kind of strengthened cable, which is harder and stronger than standard optical cable. With an unparalleled protection against physical damage without sacrificing flexibility or functionality within fiber networks, 4 core armored cable is a perfect addition to any fiber network in hazardous environments.

Related Article: An In-depth Understanding Into Multimode Fiber Jumper
What is Armored Fiber Cable?