10G DWDM Network for Economically Expanding Capacity

It can’t be denied that for most users, the capacity and transmission data rate their 10G networks offer sufficiently meet their needs at present. However, for some users, their 10G networks are capacity-hungry that requires more and more fiber optical cables installed for carrying large data. Considering that the available fiber infrastructure is limited, the method of putting more cables would be infeasible or unsuitable once the infrastructure no longer fulfill the growing requirements. Is there any economical solution to solve this issue, except upgrading the network that would cost a lot? The answer is yes. In order to create new capacity at a relatively low price, WDM technology is come up with that enables virtual fibers to carry more data. Since WDM technology has been a cost effective solution to face the capacity-hungry issue, here will offer the economical DWDM SFP+ transceiver and DWDM Mux Demux solutions for you to build the 10G DWDM network, which enables bigger capacity to meet your network needs.

DWDM SFP+ Transceiver

The DWDM SFP+ transceiver is an enhanced version of DWDM SFP transceiver that can transmit signals at 10Gbps–the max data rate, mostly deployed in the dark fiber project in combination with the DWDM Mux Demux. Like other kinds of SFP+ transceivers, it is also compliant to the SFP+ MSA (multi-source agreement), designed for building 10G Ethernet network. However, the working principle of DWDM SFP+ transceiver is much more complicated than that of common SFP+ transceiver due to the DWDM technology.

DWDM SFP+ transceiver

Generally, the DWDM SFP+ transceiver has a specific tuned laser offering various wavelengths with pre-defined “colors” which are defined in the DWDM ITU grid. The colors of the wavelengths are named in channels and the wavelengths are around 1550nm. Its channels are commonly from 17 to 61 and the spacing between channels is always about 0.8nm. In fiber optical network, the 100GHz C-Band with 0.8nm DWDM SFP+ transceiver is the most commonly used one, while transceivers with other spectrum bands like 50GHz with 0.4nm spacing DWDM SFP+ transceiver are also popular with users.

According to the transmission distance, the DWDM SFP+ transceiver can be divided into two types. One is the DWDM-SFP10G-40 with an optical power budget of 15dB, and the other is the DWDM-SFP10G-80 with an optical power budget of 23dB. As we know, the bigger the optical power budget is, the longer the transceiver will support the 10G network. Hence, the DWDM-SFP10G-40 can transmit 10G signals at lengths up to 40 km, but the DWDM-SFP10G-80 is able to support the same network with a longer distance, 80 km. What should be paid attention to is that the transmission distance can be also affected by the quality and type of the DWDM Mux Demux, the quality and length of the fiber, and other factors.

DWDM Mux Demux

The DWDM Mux Demux is a commonly used type of fiber optical multiplexer designed for creating virtual fibers to carry larger data, which consists of a multiplexer on one end for combining the optical signals with different wavelengths into an integrated signal and a de-multiplexer on the other end for separating the integrated signal into several ones. During its working process, it carries the integrated optical signals together on a single fiber, which means the capacity is expanded to some extent. In most applications, the electricity is not required in its working process because the DWDM Mux Demux are passive.

Unlike the CWDM Mux Demux with 20nm channel spacing, the DWDM Mux Demux has a denser channel spacing, usually 0.8nm, working from the 1530 to 1570nm band. It is designed for long transmission, which is more expensive than CWDM Mux Demux used for short transmission. Meanwhile, it also commonly used the 100 GHz C-band DWDM technique like the DWDM transceiver. As for its classification, there are basically two types according to line type, dual fiber and single fiber DWDM Mux Demux, and six types according to the number of the channels, 4, 8, 16, 40, 44 and 96 channels DWDM Mux Demux. All these types of DWDM Mux Demux are available at FS.COM with ideal prices. To better understand the DWDM Mux Demux, here offers a figure of a stable 8 channel DWDM Mux Demux for your reference.

8 channel DWDM Mux Demux

Conclusion

Taking the cost issue into consideration, deploying a 10G DWDM network is much more economical than upgrading your network from 10G to 40G/100G which almost requires changing out all the electronics in your network. The 10G DWDM network makes full use of DWDM technology to expand the network capacity, which creates virtual fibers to support more data signals. If your 10G network is also capacity-hungry, you are highly suggested to deploy 10G DWDM network to make new capacity. As for the related components the 10G DWDM network needs like transceiver and Mux Demux, you can easily find them at FS.COM. For instance, FS.COM offers the DWDM SFP+ transceivers compatible with almost every brand, including Cisco, Juniper, Brocade, Huawei, Arista, HP and Dell, which have been tested to assure 100% compatibility.

Things You Should Know to Deploy 100G Ethernet Network

Although the 10G and 40G Ethernet network still occupy the majority of fiber market at present, it is predicted that more and more users would deploy 100G Ethernet network in the following years for higher capacity and faster transmission data rate, and the 100G cabling network would finally make the 10G and 40G cabling network obsolete. Is there any evidence to support this prediction? Why to replace 10G and 40G cabling network and how to deploy the 100G cabling network? Does this statement take the cost issue into consideration since the 100G products like QSFP28 transceiver and QSFP28 breakout cable are much more expensive than the 10G and 40G products? Let’s talk about these topics and find the most cost effective way to deploy the 100G cabling network.

Why We Deploy 100G Cabling Network?

With the fast development of fiber technology, the capacity and transmission data rate that the 10G and 40G networks offer gradually can’t meet our needs and the Ethernet network is still driven to satisfy the increasing requirements of faster and easier access to larger volumes of data. Under this trend, the 100G network is come up with that enables unsurpassed bandwidth but can be only available at a high price. As the 100G technology is gradually matured, the cost for 100G network deployment is reduced a lot. Hence, more and more users would like to deploy the 100G network for bigger bandwidth, even it would still cost higher than 10G and 40G network deployment.

Which Transceiver Is the Best for Deploying 100G Network?

Before designing the 100G cabling network, we should choose the most proper 100G fiber transceiver to greatly ensure the performance of the network. Since there are four common kinds of 100G fiber transceivers–CFP, CFP2, CFP4 and QSFP28 transceiver available on the market, let’s study the basic knowledge of these 100G transceivers and discuss which one is the best choice for the 100G network deployment.

CFP transceiver is the first version of 100G transceiver which is published after the establishment of certification for the first 100G standard for Ethernet networks. The letter “C” means 100G, while the letters “FP” stand for Form factor Pluggable, just like the “FP” in the word SFP. In order to support the 100G network, it features very huge size which is much larger than 40G QSFP+ transceiver. Meanwhile, most of the CFP transceivers double the power consumption per bit and are ten times more expensive for per bit increased. All these shortcomings hinder the popularity of CFP transceiver and make the CFP2 and CFP4 transceiver published successively.

The CFP2 and CFP4 transceiver has no any improvement in the aspects like density, power consumption and cost, but be only advanced in the size aspect. From the following figure, you can learn that the size of the CFP family become more and more smaller. However, due to the high power consumption and cost, using CFP family to deploy 100G network still can’t meet the network requirement. Under this condition, experts put forward the QSFP28 transceiver solution which is much smaller and more economic than CFP family.

CFP-CFP2-CFP4-QSFP28

In contrast to the CFP family, QSFP28 transceiver is a better choice that offers four 25-Gbps lanes, totally achieving the whole 100G network. With use of this kind of 100G transceiver, the 100G network can be deployed as easy as the 10G and 40G network. Moreover, it completely eliminates the costly gearbox found in CFP and CFP2, while highly increasing density and decreasing power and price per bit. Hence, among all the 100G transceivers, the QSFP28 transceiver is the first choice for deploying 100G network, which should be considered as the most economical transceiver solution.

Which 100G Cabling Solution Should Be Selected?

After choosing the best 100G transceiver solution, it is also necessary to design the 100G cabling network. At present, there are basically two 100G cabling solutions. One is the direct cabling solution usually working with the QSFP28 cable, and the other is the breakout cabling solution that always uses the QSFP28 breakout cable. Considering that each solution has its own connection method and works with different fiber or copper cable, which one should be selected depends on the practical application.

QSFP28 Cable for 100G Direct Cabling and QSFP28 Breakout Cable for 100G Breakout Cabling

As for the 100G direct cabling solution, it always uses the 100GBase-SR4 QSFP28 transceiver to finish short distance transmission, and 100GBASE-LR4 QSFP28 transceiver for long transmission. In short transmission case, the 100GBase-SR4 QSFP28 transceiver can support the 100G network through OM3 12 fiber multimode MTP cable at lengths up to 70 m, and 100 m through OM4 12 fiber multimode MTP cable. It can also work with the 100G QSFP28 to QSFP28 passive direct attach cable (DAC) for up to 5m transmission and with the 100G QSFP28 to QSFP28 active direct attach cable (AOC) for up to 10m transmission. While in the long transmission case, 100GBASE-LR4 QSFP28 transceiver enables the 100G network up to 10 km on single-mode LC patch cable. If much longer transmission distance is required, you are highly suggested to choose the 100GBASE-ER4 CFP transceiver that can transmit the 100G signal at lengths up to 40 km.

As for the breakout cabling solution, the connection method is very different from the previous one, which usually use the QSFP28 breakout cable to connect one QSFP28 transceiver on one side and four SFP28 transceivers on the opposite side. This kind of 100G cabling solution enables higher port bandwidth, density and configurability at a low cost and reduces power consumption in data centers. Besides, the QSFP28 breakout cables used for 100G breakout cabling can be simply divided into two types, QSFP28 to 4SFP28 DACs and AOCs. Both of the two kinds of QSFP28 breakout cables feature four individual 25G duplex cables to achieve 100G connections, similar to the 40G QSFP+ breakout cable that has four individual 10G duplex cables.

Conclusion

With the gradual mature of 100G Ethernet technology, the cost issue is not the obstacle for the popularization of 100G Ethernet network any more. If your network has a very low transmission speed and the capacity it offers can’t face your need, then you are recommendable to upgrade your network from 10G/40G to 100G, for faster and easier access to larger volumes of data. As for the transceiver used for 100G connection, the QSFP28 is the fist choice as the most cost effective solution at present. As for the 100G network cabling, the direct cabling for 100G to 100G connection and the breakout cabling for 100G to 4×25G connection are good solutions for 100G network deployment. Which one should be selected just depends on the practical application.

Will Single-mode Fiber Work Over Multimode SFP Transceiver?

Network installers usually come across a situation that device you have in your network does not always fit and work perfectly with the fiber. They plan to make a cable plant based on the multimode cabling, but owing to the link limitation or other reasons, they have to connect multimode equipment with single-mode devices. Is it feasible? Or put it more specifically, can I use the multimode SFP over single-mode fibers or vice versa? This article will give you a detailed illustration about the feasibility of the solutions, and introduce two relevant devices (mode conditioning cable and multimode to single-mode fiber media converter).

Single-mode Fiber Over Multimode SFP—You Can If You Are Lucky

This is the question that has been asked so many time, but no one can give the exact answer—yes or no. Hence, let’s illustrate it in details.

Most people think single-mode and multimode fibers are not interchangable because of the wave length of the laser and core size of the fiber. Single-mode fiber (MMF) uses a laser as a light source (the light beam is very concentrated), while multimode fiber (MMF) uses an LED to generate the signal. This would require two significantly different devices to generate the signal.

The core sizes are drastically different between SMF and MMF. SMF is 9 micron and multimode is 62.5 or 50 micron. If users try to mix the single-mode and multimode cabling in the same network, they might have trouble dealing with the two different types of signal.

However, it is possible to interconnect two devices using SMF interfaces at one end and MMF receiver at the other end. Keep in mind that it depends on the devices, so you can if you are lucky. When plugging LC single-mode duplex fibers on the multimode fiber transceiver (1000GBASE-SX) in the network, you will find the link came up (the light on the switch turns green). Therefore, the multimode fiber transceiver connected by the single-mode fibers works for short-reach application. The following image is the real screenshot of the single-mode fibers inserting into the 1000BASE-SX SFP.

real screenshot of inserting single-mode fiber over multimode fiber transceivers

While it should be stressed that the link is not reliable and it only works for particular brand devices with a very short link length. Many sophisticated vendors like Huawei, Alcatel or Cisco do not support it. Nevertheless, owing to the differential mode delay (DMD) effect, signal loss of this connection is not acceptable, either.

To sum up, this might be feasible but not advisable. If you need to make a connection between single-mode and multimode interfaces, you’d better use the intermediate switch that is able to convert the signals between single-mode and multimode fibers. The following part will introduce two solutions that might be helpful for the multimode and single-mode conversion.

Solution 1: MCP Cable—Single-mode In and Multimode Out

As to the multimode fiber with single-mode SFPs, most people mention the mode conditioning patch (MCP) cables. The MCP cable is launched to support 1000BASE-LX optics over multimode cable plant. The mode conditioning cables allow customers to successfully run Gigabit Ethernet over our multimode cable using single-mode fiber transceivers, Cisco 1000BASE-LX/LH SFP is the special type of transceiver that can both support single-mode and multimode fibers. The image below displays the difference between standard SC multimode patch cable and SC mode conditioning patch cable.

comparison between standard SC multimode fiber patch cable and SC MCP cable

Then, in this situation, you can run successfully from a single-mode fiber transceiver over multimode fiber with the use of MCP cables, but the distance will not exceed the link specification for multimode transceivers. Otherwise, there will be much signal loss in the cable run.

In general, if you want to run multimode fiber optic cable over 1000BASE-LX SFPs, you can use the mode conditioning cable. However, mode conditioning patch cords are required for link distances greater than 984 feet (300 meters). For distance less than 300 m, please omit the mode conditioning patch cords (although there is no problem using it on short links).

Solution 2: Fiber to Fiber Media Converter—Conversion Between Multimode and Single-mode Fibers

As noted before, mode conditioning cables, to some extent, can realize the connection between single-mode to multimode, but you can not say that you can convert single-mode to multimode or vice versa. Mode conversion between multimode and single-mode fibers often requires fiber to fiber media converters or the single-mode to multimode fiber converter.

F2F-10G-Multimode-to-Single-mode

In the above diagram, two Ethernet switches equipped with multimode fiber ports are connected utilizing a pair of fiber-to-fiber converters which convert the multimode fiber to single-mode and enable network connectivity across the distance between Gigabit switches.

Conclusion

It doesn’t really make much sense to use the single-mode fiber transceivers with multimode fibers in your network or vice versa, although the link will come up. Like I said above, you can if you are lucky connect. MCP cables and fiber to fiber converter are the two available options for single-mode and multimode connection. If you bought the wrong fiber optic cables, just replace it into the right one. Fiber optic cables and optical transceivers modules nowadays are very cheap. You won’t need to risk of mixing them in the same network.

Original Source : Single-mode Fiber Work Over Multimode SFP Transceiver

QSFP+ to SFP+ Adapter (QSA) Module Vs. QSFP+ to SFP+ Breakout Cable

People frequently ask about feasible solutions between 10G and 40G servers. QSFP+ breakout cables like QSFP+ to 4 SFP+ cables and MTP to 4 LC harness cables are the commonly used equipment to connect between QSFP+ ports and SFP+ ports. But recently, Cisco launched a new type of product—QSFP+ to SFP+ Adapter (QSA) module that could provide a smooth migration to 40 Gigabit Ethernet. Is it a better solution for the 10G to 40G migration? Should I use the QSA module or 40G QSFP+ breakout cable? This article will answer the above questions and provide some suggestions to you.

QSA Module—Is It a Better Solution for the 40G Migration?

The QSFP+ to SFP+ Adapter module, specified by Cisco, is the module built in QSFP+ form factor with a receptacle for SFP+ cable connector at the back (seen in the below image). When connecting the QSFP port to an SFP+ port, QSA module usually acts as an interface for SFP+/SFP cables. That means you can effectively plug in an SFP+/SFP optics operating at a 10 Gbps port on this module, then inserting the module into a QSFP port cage to realize the 40G Ethernet transition. QSFP+ to SFP+ adapter module ensures the smooth connectivity between 40 Gigabit Ethernet adapter and 10 Gigabit hardware using SFP+ based cabling. Therefore, once the QSA module came out in 2016, it was soon considered as the effective solutions for converting 40G ports to the 10G ports.

Cisco QSFP+ to SFP+ adapter cable

40G QSFP+ Breakout Cables Overview

People usually use either the QSFP+ to 4 SFP+ breakout cables or MTP to LC harness cables to convert the downlink 40G port of ToR (Top of Rack) access layer switch into 4x10G fan out mode, then connect to the 10G cabinet server port. QSFP+ to SFP+ breakout cable including the direct attach copper cable (DAC) and active optical cable (AOC) consists of a QSFP+ connector on one end and four SFP+ connectors on the other end. The cables use high-performance integrated duplex serial data links for bidirectional communication on four links simultaneously.

QSFP+ to SFP+ breakout cable

While the MTP to LC harness cable have one one MTP cables on the one end and four LC connectors on the other end. This type of cable is recommended to be used in the same rack within the short distance. The picture above shows the direct connectivity between the QSFP+ transceivers and SFP+ transceivers by using the MTP to LC harness cable.

QSA Module or QSFP+ Breakout Cable

In this part, I will make a comparison between QSFP+ to SFP+ adapter modules and QSFP+ breakout cables from the aspects of cost, performance and compatibility.

Cost—QSFP+ Breakout Cables Wins

QSFP+ to SFP+ adapter module is not certificated by Multi-source Agreement (MSA), but a sole source paradigm defined by few vendors. The only vendor owns its patent, so the QSA modules on the market are quite expensive. Nevertheless, QSFP+ breakout cables covered in the MSA standard, support both copper and optical connectivity, which are much cheaper than QSA modules. Cost comparison between QSA module and QSFP+ breakout cable (DAC, 1m) is listed in the below table.

cost comparison between QSA module and QSFP+ breakout cable

Performance

With QSA module, users have the flexibility to use any SFP+/SFP optics to connect to the 40Gbps data rate with a single 10G connection. However, QSA module only exists in 10G-40G speed, which also explains the reasons of its unpopularity of the market. QSFP+ to 4 SFP+ breakout cables split the 40G channel into 4x10G channel which provide four times more data transfers than QSA module does.

Compatible Switch and SFP/SFP+ Modules

QSA modules, according to Cisco, are available in 40 Gigabit Ethernet compatibility matrix. Cisco SFP/SFP+ transceivers that can be plugged into the QSA modules are concluded as Cisco 10GBASE-SR, LR, ER, ZR, DWDM SFP+, FET-10G and 10G SFP+ cable as well as SFP (1000BASE-T, SX, LX, EX, ZX). As for the QSFP+ to SFP+ breakout cables, different vendors have different compatible issues. Keep in mind that you should find the reliable fiber optic transceiver manufacturers.

Reminder:

  • Before using the QSA modules or the QSFP+ breakout cables to connect a 40 Gigabit Ethernet port to a 10 Gigabit SFP+ port, you must enable the fan-out mode of your devices.
  • Not all the 40G cards and switches can be split into 4x 10Gb mode, for example, the Mellanox QSFP cards do not support the QSFP to SFP+ breakout, but their switches can.
  • With the QSA module, you can directly use the SFP+ modules in a QSFP+ port, but you cannot use the QSFP+ optical cables in a QSA setup.
  • Telecom industry has been modified rapidly. Hence, it is more cost-effective to make additional investment in high-speed switches instead of breakout cables and expensive QSA modules.
Conclusion

Both the QSFP+ breakout cables and QSA modules provide a smooth migration to the 40 Gigabit Ethernet. With these optics, you can reuse the existing 10G SFP+ cables, optical transceivers and switches when upgrading to 40G Ethernet. QSFP+ breakout cables is regarded as the cost-effective and reliable solutions for the most situations, but QSA module is preferable for the application with a single 10G connection.

Can I Use the QSFP+ Optics on QSFP28 Port?

100G Ethernet will have a larger share of network equipment market in 2017, according to Infonetics Research. But we can’t neglect the fact that 100G technology and relevant optics are still under development. Users who plan to layout 100G network for long-hual infrastructures usually met some problems. For example, currently, the qsfp28 optics on the market can only support up to 10 km (QSFP28 100GBASE-LR4) with WDM technology, which means you have to buy the extra expensive WDM devices. For applications beyond 10km, QSFP28 optical transceivers cannot reach it. Therefore, users have to use 40G QSFP+ optics on 100G switches. But here comes a problem, can I use the QSFP+ optics on the QSFP28 port of the 100G switch? If this is okay, can I use the QSFP28 modules on the QSFP+ port? This article discusses the feasibility of this solution and provides a foundational guidance of how to configure the 100G switches.

For Most Switches, QSFP+ Can Be Used on QSFP28 Port

As we all know that QSFP28 transceivers have the same form factor as the QSFP optical transceiver. The former has just 4 electrical lanes that can be used as a 4x10GbE, 4x25GbE, while the latter supports 40G ( 4x10G). So from all of this information, a QSFP28 module breaks out into either 4x25G or 4x10G lanes, which depends on the transceiver used. This is the same case with the SFP28 transceivers that accept SFP+ transceivers and run at the lower 10G speed.

QSFP+ can work on the QSFP28 ports

A 100G QSFP28 port can generally take either a QSFP+ or QSFP28 optics. If the QSFP28 optics support 25G lanes, then it can operate 4x25G breakout, 2x50G breakout or 1x100G (no breakout). The QSFP+ optic supports 10G lanes, so it can run 4x10GE or 1x40GE. If you use the QSFP transceivers in QSFP28 port, keep in mind that you have both single-mode and multimode (SR/LR) optical transceivers and twinax/AOC options that are available.

In all Cases, QSFP28 Optics Cannot Be Used on QSFP+ Port

SFP+ can’t auto-negotiate to support SFP module, similarly QSFP28 modules can not be used on the QSFP port, either. There is the rule about mixing optical transceivers with different speed—it basically comes down to the optic and the port, vice versa. Both ends of the two modules have to match and form factor needs to match as well. Additionally, port speed needs to be equal or greater than the optic used.

How to Configure 100G Switch

For those who are not familiar with how to do the port configuration, you can have a look at the following part.

  • How do you change 100G QSFP ports to support QSFP+ 40GbE transceivers?

Configure the desired speed as 40G:
(config)# interface Ethernet1/1
(config-if-Et1/1)# speed forced 40gfull

  • How do you change 100G QSFP ports to support 4x10GbE mode using a QSFP+ transceiver?

Configure the desired speed as 10G:
(config)# interface Ethernet1/1 – 4
(config-if-Et1/1-4)# speed forced 10000full

  • How do you change 100G QSFP ports from 100GbE mode to 4x25G mode?

Configure the desired speed as 25G:
(config)# interface Ethernet1/1 – 4
(config-if-Et1/1-4)# speed forced 25gfull

  • How do you change 100G QSFP ports back to the default mode?

Configure the port to default mode:
(config)# interface Ethernet1/1-4
(config-if-Et1/1)# no speed

Note that if you have no experience in port configuration, it is advisable for you to consult your switch vendor in advance.

Conclusion

To sum up, QSFP+ modules can be used on the QSFP28 ports, but QSFP28 transceivers cannot transmit 100Gbps on the QSFP+ port. When using the QSFP optics on the QSFP28 port, don’t forget to configure your switch (follow the above instructions). To make sure the smooth network transmission, you need to ensure the connectors on both ends are the same and no manufacturer compatibility issue exists.

100G QSFP28 PSM4 to Address 500m Links in Data Center

100G QSFP28 PSM4 optics is a type of 100G optical transceiver that provides a low-cost solution to long-reach data center optical interconnects. 100G PSM4 (parallel single-mode 4 lane) standard is mainly targeted to data centers that based on a parallel single-mode infrastructure for a link length of 500 m. Compared with the hot-selling 100GBASE-SR4 and 100GBASE-LR4 optics, 100G QSFP28 PSM4 recently wins the popularity among the overall users. This article will provide a complete specification of the 100G QSFP28 PSM4 transceiver and explain the reason why people would need QSFP28 PSM4.

QSFP28 module

QSFP28 PSM4—A Low-Cost but Long-Reach Solution

100G QSFP28 PSM4 is compliant with 100G PSM4 MSA standard, which defines a point-to-point 100 Gb/s link over eight parallel single-mode fibers (4 transmit and 4 receive) up to at least 500 m. PSM4 uses four identical lanes per direction. Each lane carries a 25G optical transmission. The 100G PSM4 standard is now available in QSFP28 and CFP4 form factor. Table 2 shows the diagram of the 100G QSFP28 PSM4 Specification. 100G PSM4 is a low-cost solution. Its cost structure is driven by the cost of the fiber and the high component count. FS.COM offers the Cisco compatible 100G QSFP28 PSM4 at US$750.00.

diagram of QSFP28 PSM4

As you can see in the above image, 100G QSFP28 PSM4 transceiver uses four parallel fibers (lanes) operating in each direction, with transmission distance up to 500 meters. The source of the QSFP28 PSM4 module is a single uncooled distributed feedback (DFB) laser operating at 1310 nm. It needs either a directly modulated DFB laser (DML) or an external modulator for each fiber. The 100GBASE-PSM4 transceiver usually needs the single-mode ribbon cable with an MTP/MPO connector.

Why Do We Need 100G QSFP28 PSM4?

100G PSM4 is the 100G standard that has been launched by multi-source agreement (MSA) to enable 500m links in data center optical interconnects. But as we all know, there are several popular 100G interfaces out there on the market, such as QSFP28 100GBASE-SR4, QSFP28 100GBASE-LR4, QSFP28 100GBASE-CWDM4, and CFP 100GBASE-LR4, etc. So with so many options, why do we still need 100G QSFP28 PSM4?

To better help you make up your mind, you need to figure out the following questions:

Q1: What are the net link budget differences between PSM4, SR4, LR4 and CWDM?
Table 3 displays the detailed information about these 100G standards.

100GBASE-PSM4 100GBASE-CWDM4 100GBASE-SR4 100GBASE-LR4
4-wavelength CWDM multiplexer and demultiplexer No need Need No need Need
Connector MPO/MTP connector Two LC connectors MPO/MTP connector Two LC connectors
Reach 500 m 2 km 100 m 10 km

Note: the above diagram excludes the actual loss of each link (it is the ideal situation). In fact, WDM solution are at least 7 db worse link budget than PSM4. For a 2 km connectivity, a CWDM module will have to overcome about 10 db additional losses compared to PSM4. And the 100G LR4 optics at 10 km is 12 db higher total loss than PSM4.

Q2: What power targets are achievable for each, and by extension what form factors?
According to the IEEE data sheet, the WDM solutions cannot reasonably fit inside QSFP thermal envelop, while PSM4 can fit inside the QSFP thermal envelope. That means you would need the extra power for the WDM solution of your network. But if you use the QSFP PSM4, this won’t be a problem.

All in all, a 100G QSFP28 PSM4 transceiver with 500m max reach is a optional choice for customers. Because other 100G optics are either too short for practical application in data center or too long and costly. QSFP28 PSM4 modules are much less expensive than the 10 km, 100GBASE-LR4 module, and support longer distance than 100GBASE-SR4 QSFP28.

Summary

QSFP28 PSM4 is the lowest cost solution at under one forth the cost of either WDM alternatives. 100G QSFP28 PSM4 can support a link length of 500 m, which is sufficient for data center interconnect applications. 100G QSFP28 PSM4 also offers the simplest architecture, the most streamlined data path, higher reliability, an easy upgrade path to 100G Ethernet.

How to Clean a Fiber Optic Transceiver?

To ensure the high performance of optical data transmission, fiber optic cleaning is regarded as an essential way to get rid of the contaminants on devices. Fiber optic connectors are often recommended to be cleaned on a regular basis. Apart from the connectors, other devices such as fiber optic transceiver, optical adapter should also be cleaned when they are being polluted. This post will focus on introducing the proper method of cleaning fiber optic transceivers.

How to Find a Contaminated Optical Transceiver?

Compared with connectors, transceiver modules seem to have a smaller chance to be contaminated. Therefore, fiber optic transceivers should only be cleaned when problems occur. Generally, if signal output from the transceiver is still false or in low-power after cleaning the connectors, you can clean the fiber optic transceiver instead to solve the issue. Common contaminant in optical transceivers is the debris or particles coming through the contact with optical connector ferrules. The following picture shows the comparison of dirty and clean interfaces of transceivers under the digital microscope.

fiber optic transceiver contaminants

Cleaning Tools

Air duster and lint-free swab are the major cleaning tools for fiber optic transceivers. Air duster uses the clean dry air to blow any dust and debris out of the transceiver. Lint-free swab is special for not leaving any lint in the transceiver interface after cleaning.

cleaning tools

Things to Note Before Cleaning

A safe operation is very important to protect yourself from unnecessary accidents. Before starting the cleaning process, here are some precautions for you to note.

  • Always handle optical modules in an ESD (electro-static discharge) safe area using the proper safety precautions.
  • Ensure that the module power is off and handle the modules with care.
  • Always use CDA or an approved canned compressed air supply.
  • Always hold the can of compressed air upright. Tipping may release liquids in the air stream.
  • Do not touch the inner surfaces of the module including the OSA (optical subassemblies), or insert any foreign objects into the ports.
  • Use of finger cots or powder free surgical gloves is not required but can ensure better cleanliness.
Cleaning Procedures

After every thing is ready, you can start to clean the transceiver interface. The followings are the general cleaning steps for reference. If condition permits, you can use microscope to inspect the transceiver to ensure cleanliness. Usually, when output signal becomes normal, then the cleaning procedure is a success.

  • Step 1: Open the dust cover or remove the dust plug from the module.
  • Step 2: Use a non-abrasive cleaner (air duster) to remove any dirt or debris.
  • Step 3: Insert a lint-free cleaning stick of the appropriate size (2.5 mm or 1.25 mm) and turn clockwise. It is recommended to do dry cleaning instead of wet cleaning by using alcohol-based cleaning sticks.
  • Step 4: Repeat steps 2 and 3 if necessary.
  • Step 5: Remove the cleaning stick, and reinsert the module’s dust cap. Always keep the dust cap inserted in the module when not in use.
  • Step 6: Always make sure that the connector is also clean before plugged into the module.
Conclusion

Fiber optic cleaning plays an important role in fiber optic system. Although optical transceivers are less frequent to be cleaned, the request for cleaning still exists. As long as you use the correct cleaning tools and follow the right cleaning procedures, transceivers can surely be cleaned with no more contamination. In this case, the efficiency of fiber optic system will be greatly improved.

Migrating to 40/100G Networks With MTP Harness Conversion Cable

The market turning to 40G/100G transmission is imperative in today’s gigabit Ethernet applications. MTP cabling assemblies, with their overwhelming advantages, provide a fast, simple and economical upgrade path from 10 Gigabit to 40 or 100 Gigabit applications. As we all know, 40G/100G gigabit Ethernet backbone networks often use 8-fibers per channel, which means most existing equipment doesn’t utilize fibers fully in 12-fiber cabling systems. Today this post will introduce a type of MTP fiber cable—MTP conversion cable which can overcome the problem mentioned above.

12-fiber MTP connectors are popular in the past years. And most backbone networks deploy the 12-fiber cabling systems. But with the quick development of optical transceivers, for 40G/100G gigabit applications, many transceivers that are guiding the industry from 10G to 40G and100G utilize only eight fibers. Then the problem arises. However, MTP conversion cable allows users to convert their existing MTP backbone cables to an MTP type which matches their active equipment. It’s a low-loss alternative to conversion modules because they eliminate one mated MTP pair across the link. There are mainly three types of MTP conversion cable on the market: 1×2, 1×3 and 2×3 MTP conversion cable.

1×2 Harness MTP Conversion Cable

This MTP conversion cable has a 24-fiber MTP connector on one end and two 12-fiber MTP connectors on the other end. It is used to allow existing 10G MTP 12-fiber trunk cables to carry 40G/100G channels. The 40G/100G signal is split equally across two 12-fiber trunks which were previously installed within a traditional MTP modular network.

1x2 MTP conversion cable

1×3 MTP Harness Conversion Cable

Like the 1×2 MTP conversion cable, this conversion cable also has a 24-fiber MTP connector on one end. But the other end comprises three 8-fiber MTP connectors, which is different from the former type. This MTP conversion cable allows users to convert their 24-fiber backbone trunks into Base-8 connections so that 40G rates can be achieved easily. A Single Base-24 connection is split out to three Base-8 connections, giving users three 40G ports.

1x3 MTP conversion cable

2×3 Harness MTP Conversion Cable

For users who have already installed a 10G MTP based network using 12-fiber and 24-fiber trunk cables and modules, this 2×3 MTP conversion cable can provide the conversion from 12-fiber to 8-fiber connectivity for full-fiber utilization, especially allowing for maximum use of existing fibers when converting to 40G channels. Because the conversion cable has two 12-fiber MTP connectors on one end and three 8-fiber MTP connectors on another end. They are available in either direct or crossed polarity for fast deployment using polarity management method A, and polarity can be reversed on site, offering enhanced flexibility & operability.

2x3 MTP conversion cable

Cabling Options with 40G/100G MTP Conversion Cable

The 40G/100G MTP conversion cables eliminate the wasted fibers in current 40 gigabit transmissions and upcoming 100 gigabit transmission. Compared to purchase and install separate conversion cassettes, using MTP conversion cables is a more cost-effective, lower-loss option. Here are three application examples.

Cabling Options for 40G/100G Connectivity With 1×3 MTP Conversion Cable

As shown in the picture below, two 40G/100G switches are connected by 1X3 MTP conversion cables (one 24-fiber MTP connector on one end and three 8-fiber MTP connectors on the other end), 24-fiber MTP trunk cable and MTP adapter panels. With this MTP conversion cable, less fiber cables are required. That brings more conveniences for cable management in data centers.

1x3 MTP conversion cable soulution

The cabling solution for 40G/100G conversion with 1×2 MTP conversion cable is similar to the solution of 1×3 MTP conversion cable.

Cabling Options for 40G Connectivity with 2×3 MTP Conversion Cable

In the following applications, connecting the 40G transceivers with a 8-fiber MTP conversion cable rather than a traditional 12-fiber MTP jumper, can enscure the 100% backbone fiber utilization and saving cost.

2x3 MTP conversion cable soulution

Summary

The 40G/100G MTP conversion cables provide a cost-effective cabling solution for upgrading to 40G and 100G networks. All the benefits and features of these MTP conversion harness cables are explained in the article. And the three types of 40G/100G MTP conversion cable which are available in OS2, OM3 and OM4 options are provided in FS.COM. If you want to know more details, please contact us via sales@fs.com.

Applications of Fiber Media Converter

With the increased demands on the network, various network devices are manufactured to meet these demands. Fiber media converter is one of a key components in those devices. It features of high bandwidth capacity, long distance operation and reliability, making it popular in modern networking systems. This post is going to explore some basis and illustrates several application examples of fiber media converter.

Basics of Fiber Media Converter

Fiber media converter is a device that can convert an electrical signal into light waves between copper UTP (unshielded twisted pair) networks and fiber optic networks. As we all know, compared with Ethernet cable, fiber optic cables have longer transmission distance, especially the single mode fiber cables. Therefore, fiber media converters help operators solve the transmission problem perfectly.

Fiber media converters are typically protocol specific and are available to support a wide variety of network types and data rates. And they also provide fiber-to-fiber conversion between single mode and multimode fiber. Besides, some fiber media converters like copper-to-fiber and fiber-to-fiber media converters have the capability of wavelength conversion by using SFP transceivers.

Fiber Media Converter

According to different standards, fiber media converters can be classified into different types. There is managed media converter and unmanaged media converter. The differences between them are that the latter one can provide additional network monitoring, fault detection and remote configuration functionality. There is also copper-to-fiber media converter, serial to fiber media converter and fiber-to-fiber media converter.

Applications of Common Types of Fiber Media Converters

With the several advantages mentioned above, fiber media converters are widely used to bridge copper networks and optical systems. This part is primarily to introduce two types of fiber media converters’ applications.

Fiber-to-Fiber Media Converter

This type of fiber media converter enables the connections between single mode fiber (SMF) and multimode fiber (MMF), including between different “power” fiber sources and between single-fiber and dual fiber. Following are some application examples of fiber-to-fiber media converter.

Multimode to Single Mode Fiber Application

Since SMF supports longer distances than MMF, it’s common to see that conversions from MMF to SMF in enterprise networks. And fiber-to-fiber media converter can extend a MM network across SM fiber with distances up to 140km. With this capacity, long distance connection between two Gigabit Ethernet switches can be realized using a pair of Gigabit fiber-to-fiber converters (as shown in the following picture).

Fiber Media Converter application 1

Dual Fiber to Single-Fiber Conversion Application

Single-fiber usually operates with bi-directional wavelengths, often referred to as BIDI. And the typically used wavelengths of BIDI single-fiber are 1310nm and 1550nm. In the following application, the two dual fiber media converters are linked by a single mode fiber cable. Since there are two different wavelengths on the fiber, the transmitter and receiver on both ends need to be matched.

Fiber Media Converter application 2

Serial to Fiber Media Converters

This kind of media converter provides fiber extension for serial protocol copper connections. It can be connected with RS232, RS422 or RS485 port of computer or other devices, solving the problems of traditional RS232, RS422 or RS485 communication conflict between distance and rate. And it also supports point-to-point and multi-point configurations.

RS-232 Application

RS-232 fiber converters can operate as asynchronous devices, support speeds up to 921,600 baud, and support a wide variety of hardware flow control signals to enable seamless connectivity with most serial devices. In this example, a pair of RS-232 converters provides the serial connection between a PC and terminal server allowing access to multiple data devices via fiber.

Fiber Media Converter application 3

RS-485 Application

RS-485 fiber converters are used in many multi-point applications where one computer controls many different devices. As shown in the picture below, a pair of RS-485 converters provides the multi-drop connection between the host equipment and connected multi-drop devices via fiber cable.

Fiber Media Converter application 4

Summary

Affected by the limitation of Ethernet cables and increased network speeds, networks are becoming more and more complicated. The application of fiber media converters not only overcome the distance limitations of traditional network cables, but enables your networks to connect with different types of medias like twisted pair, fiber and coax.

Related article: Things You Need to Know About Fiber Media Converter

Getting to Know About DWDM Tunable Transceiver

DWDM (Dense Wavelength Division Multiplexing) technology offers a great way to boost channel capacity and transmission speed for optical systems. And it has been used in many applications, especially in long haul transmissions. In these applications, DWDM optic transceiver plays an important role. This post intends to introduce a special kind of DWDM transceiver—tunable transceiver.

What Is a DWDM Tunable Transceiver?

DWDM tunable transceiver is a unique transceiver that can select the channel or “color” the laser emits. Put it in simple terms, most WDM systems generally use optical transceivers with a fixed wavelength. That means there is a spare for each wavelength in use. But tunable transceiver has the capacity to adjust the wavelength of the transceiver on-site to meet different requirements. That’s the most distinguished point of tunable transceivers. Another characteristic of tunable transceivers is that the tunable function only lies in DWDM system due to the dense wavelength grid of DWDM.

Typically the tunable transceivers are for the C-band 50GHz. Around 88 different channels can be set with intervals of 0.4nm, which is the 50GHz band. These optics usually start from channel 16 up to 61 but this depends on the manufacturer’s router/switch and which channels it supports. And the transmission distance of DWDM tunable transceiver over single mode fibers is up to 80km and data speed is up to 10Gbps.

In addition, the DWDM tunable transceivers are available for a wide range of equipment like routers, switches and servers. With these transceivers, network operators can change wavelengths unlimited within the C-band DWDM ITU grid.

Types of DWDM Tunable Transceiver

In today’s market, there are mainly two kinds of DWDM tunable transceivers.

Tunable XFP transceiver

Tunable XFP transceiver are manufactured with an integrated full C-band tunable transmitter and a high performance receiver. Wavelengths can be set as default in 50GH DWDM ITU grid. The maximum distance of this transceiver on a single mode fiber is up to 80km. In the market, different manufactures may name tunable XFP transceiver in different forms. For example, Cisco may name it as “ONS-XC-10G-C” while Juniper version is “XFP-10G-CBAND-T50-ZR”. Besides, this transceiver be tuned in different ways.

10g dwdm tunable xfp transceiver

Tunable SFP+ Transceiver

The tunable SFP+ optical transceiver is a full duplex serial electric, serial optical device. Its transmit and receive functions are contained in a single module that provides a high-speed serial link at 9.95 to 11.3Gbps signaling rates. And the transceiver supports the enhanced SFP+ specification. Here is a simple picture showing its working process.

SFP plus tunable transceiver

On the transmit side, the serial data are passed from the electrical connector to a modulator driver. The modulator driver modulates a C-band cooled tunable transmitter, enabling data transmission over up to 80km on single mode fiber through an industry standard LC connector. On the receive side, the 10G optical data stream is recovered from an APD through a transimpedance amplifier to the electrical connector.

Benefits of DWDM Tunable Transceiver

Tunable transceivers have progressed rapidly in recent years. They have become popular in DWDM transmission systems because of their multi-faceted abilities and ease of spare use. Especially when combined with ROADM (reconfigurable optical add-drop multiplexers), DWDM tunable transceivers become a powerful transmission component. In simple terms, DWDM tunable transceivers have benefits below.

  • A wide tuning range. Compared with common fixed wavelength optical transceivers, DWDM tunable transceivers can save time and money in the long run.
  • Be more suitable for 100G systems by reducing line-width. The ability to adjust wavelengths provides more convenience to fit different transmitting needs.
  • Tunable lasers are capable of switching wavelengths in just nanoseconds. Tunable laser is a vital part of tunable transceivers. It is a high-speed and high-performance optics, enabling the needed wavelength to be reprogrammed in seconds.
Summary

DWDM tunable transceivers are able to function on various wavelengths and to adjust wavelengths according to users’ needs, making them prevalent among DWDM systems. This article mainly introduces the basis and two types of DWDM tunable transceivers. If you want to know more about it, please visit FS.COM.