标签归档:fiber optic network

There are four key points of 10G EPON technology

With the major carriers “Broadband speed”, “Light of Copper” project extensively, The future will be a multimedia broadband services, video on demand, interactive games as the main feature, high-bandwidth, integrated operators will be judged promoted by the merits of the standard broadband products.

Under the broadband Fiber Optic Network in the trend, PON technology has become the world’s attention to various telecom operators hot technology is one of the operators to implement “broadband speed”, “Light of Copper” engineering technology base. Wheter EPON, or GPON, which provides only for the uplink and downlink bandwidth of

1. Defines six 10G EPON optical power budget, in view of the asymmetric mode PRX10, PRX20 and PRX30 as well as for symmetric mode PR10, PR20 and PR30, these six kinds of optical power budget model is basically to meet the construction needs of the service provider network;

2. 10G EPON technology in achieving the 1G EPON conventional multi-point control protocol layer (MPCP) based on the forward compatibility, also extended the original message type, for reporting optical terminal equipment, EPON OLT/EPON ONU Fiber Transceiver switch time to meet the 10G EPON network requirements;

3. 10G EPON uses (255, 223) Forward Error Correction (FEC) encoding method, the encoded with FEC coding for the same strain of 1G EPON, but its strong support 10G EPON coding gain can lower the sensitivity of the optical receiver;

4. 10G EPON uplink and downlink wavelength for the re-planning, downlink using 1268-1280nm wavelength, then reuse the original uplink of 1G EPON 1575-1580 nm wavelength, the wavelength in order to avoid conflicts, 10G EPON uplink only use time division multiple access (TDMA) manner.

Has been released G.987.1 standard that defines 10G GPON system’s overall technical requirements and system architecture, clearly put forward the 10G GPON system to ensure good QoS, based on the traditional telecom services to fully support all emerging businesses and the same time, also provides dynamic Bandwidth Allocation (DBA) algorithm, energy saving, authentication and encryption related content to inherit the original 1G GPON suppliers; The G.987.2 is the focus of standardized 10G GPON physical layer parameters, including downlink rate, ODN power budget, splitting ratio, up and down the line wavelength range and line coding, etc., although down the line of 10G EPON same wavelength range and 10G EPON, GPON but due to the wavelength with 1G is not conflict, therefore, 10G GPON uplink and downlink are used wavelength division multiple access (WDMA) manner.

A complete industrial chain, including chip PON, optical modules and equipment three links. If to analysis PON industry chain, it need to start from the three links, analysis of every link current development status and future development trend.

Overall, 10G EPON and 10G GPON is currently not reach the requirements of large-scale commercial applications, although some equipment manufacturers have recently introduced a 10G EPON or 10G GPON products, and with operators, the creation of some experimental inning, but still in the laboratory testing phase, is still some distance away from the large-scale commercial.
10G PON technology to meet future access networks, “large-capacity, fewer offices,” the direction of development, while improving access speed, supports larger branching ratio, covering more users. Therefore, 10G PON technology will become the future telecom operators to achieve “broadband speed”, “Light of Copper” and other broadband network construction hot technology for sustainable development.

Costs of the Comparison in the DWDM and SDH Network Construction

When we choose the fiber optic devices for our fiber optic networks, cost is necessary factor that we have to consider, almost all the consumers want good quality and affordable products for their network, but there is a point we need to know that is not reasonable to judge which costs of system or technology is more expensive only by the fiber optic devices. Therefore, this page will focus on DWDM system and SDH networks.

The fact that channel spacing’s and frequency stability of CWDM results that EDFAs could not be utilized. As though the DWDM can. The DWDM EDFA Booster amplifier?(shown as the figure) is a cost efficient solution for DWMD fiber optic link amplification which operates at the transmission side of the link. SDH EDFA Booster Amplifier?is designed for the SDH applications which installed after the optical transmitter to increase transmission distance for single wavelength optical module system.

dwdm amplifier

As we know, the fiber optic module is integrated EDFA, it is divided into optoelectronic integrated EDFA and optical gain module, which has the characteristics of small size, low power consumption and easy to use. Can be installed in various systems easily according to users requirements, such as SDH frame, CATV machine box and DWDM system chassis. In fact, it is the specific infrastructure not only in DWDM system but also SDH networks. Although DWDM EDFA is more expensive than SDH EDFA from the diagram, can we say that the cost we need for DWDM system application is more expensive? No, the answer is negative.

Product Category Product Model Price
CATV Booster Amplifiers CATV-EDFA-BA-24 US$ 1,625.00
CATV-EDFA-BA-23 US$ 1,387.00
CATV-EDFA-BA-22 US$ 1,300.00
CATV-EDFA-BA-21 US$ 1,213.00
CATV-EDFA-BA-20 US$ 1,148.00
CATV-EDFA-BA-19 US$ 1,105.00
CATV-EDFA-BA-18 US$ 1,062.00
CATV-EDFA-BA-17 US$ 1,018.00
CATV-EDFA-BA-16 US$ 975.00
CATV-EDFA-BA-15 US$ 932.00
CATV-EDFA-BA-14 US$ 888.00
CATV-EDFA-BA-13 US$ 845.00
SDH Booster Amplifiers SDH-EDFA-BA-O20 US$ 1,517.00
SDH-EDFA-BA-O10 US$ 1,062.00
SDH-EDFA-BA-O6 US$ 975.00
SDH-EDFA-LA-O20 US$ 1,733.00
SDH-EDFA-LA-O10 US$ 1,408.00
SDH-EDFA-LA-O6 US$ 1,127.00
SDH-EDFA-PA-G30 US$ 1,473.00
SDH-EDFA-PA-G20 US$ 1,300.00
SDH-EDFA-PA-G16 US$ 1,127.00
DWDM Booster Amplifiers DWDM-EDFA-BA-O23 US$ 3,683.00
DWDM-EDFA-BA-O22 US$ 2,665.00
DWDM-EDFA-BA-O21 US$ 2,492.00
DWDM-EDFA-BA-O20 US$ 2,383.00
DWDM-EDFA-BA-O19 US$ 1,820.00
DWDM-EDFA-BA-O18 US$ 1,733.00
DWDM-EDFA-BA-O16 US$ 1,625.00
DWDM-EDFA-BA-O17 US$ 1,690.00
DWDM-EDFA-BA-O15 US$ 1,517.00
DWDM-EDFA-BA-O14 US$ 1,300.00
DWDM-EDFA-BA-O13 US$ 1,408.00

DWDM are technologies that improve the capability of optical cable in carrying data by multiplexing many channels of wavelengths, and SDH are technologies that are used as a buffer interfacing layer for higher layers access the huge capability of Optical transmission system. DWDM is multiple signal transmit over a single fiber called DWDM or Different frequencies (colors/wavelengths/lambdas) for different connections over the single fibre. Full featured DWDM equipment can comprise the same range of cards as SDH. They can support fully configurable cross connect features. DWDM technology provides very high bandwidth long haul inter-connect links. Let’s say in microwave or fiber of point to point terms, SDH equipment is used when you need to connect several site/clients towards star topology. It is conventional TDM based and traffic is dropped and collected in SDH and rerouted towards desired point destination in form of electrical or light signals. Where as DWDM is mostly used at the core and is of fiber, traffic gathered from different equipments (SDH or others) and transported over fiber for analyzing billing or interpretation.

Due to the different characteristics between DWDM and SDH and then they cannot be compared logically. A DWDM ring may be equivalent to 40 SDH rings. But we can compare two rings of different capacities. Well, the only cost savings we will notice is that on the same fiber, we will be able to send multiple lambdas (SDH equipments / routers), using DWDM. SDH costs will be the same and you will add DWDM systems costs, maybe tens or hundreds of thousands of dollars and it all depends on the complexity. If you do not use DWDM, you will have to install more fibers for each SDH link. Well, fiber installation costs are high and they depend on the distance and geography. If the operators could transport the data using only SDH which would imply bigger costs for fiber infrastructure, more power consumption. In fact, there are also so many other elements in the network that for monitoring the network, more workers would be needed, they are both in monitoring and field intervention. Except this, DWDM systems are usually more reliable than SDH. So maybe the cost of maintenance would be cheaper. However, you need to keep in mind that DWDM systems amplification can save the use of many SDH repeaters or regenerator. In a word, if you wonder that which infrastructure costs are more reasonable, judge not only by the devices’cost, you need a combination of various factors to have a decision.